首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
随着全球人口增长,世界范围内野地-城市交界域(WUI)正在加速扩张。美国的WUI面积大、分布广、聚集人口多,由于交界域直接与森林植被相贯通,极易受到林火影响,区域范围内人类生命财产安全面临巨大威胁。经过长期的火灾管理实践,美国形成了一套较为完善的WUI林火预防、扑救管理体系。本文从美国WUI的形成方式、火灾发生情况、预防扑救措施等几方面系统总结了美国WUI火灾的管理体系。此外,本文分析了我国WUI火灾管理的现状及存在问题,并基于美国经验提出了完善我国WUI火灾管理的六点建议:(1)制定交界域消防管理计划;(2)合理利用计划火烧;(3)研发火灾预警系统;(4)增强社区防火能力;(5)提高消防员灭火水平;(6)完善火灾扑救策略。  相似文献   

2.
火在生态系统中的作用   总被引:3,自引:0,他引:3  
《生态学杂志》1992,11(1):41-47
前言火对植被的影响是在近十多年来才被完全确认的。在二十世纪的大部分时间内,火常常被认为是破坏生态系统的非自然因子;然而,植被学家、人类学家、地理学家和其他许多学者都认为北美的土族印地安人和其他许多民族曾广泛地利用火作为土地管理的工具(Van-  相似文献   

3.
不同植被类型森林火灾及雷击火自组织临界性   总被引:4,自引:0,他引:4  
利用黑龙江省大兴安岭林区呼中区 196 5~ 2 0 0 2年的雷击火数据、黑龙江省 1981~ 2 0 0 0年森林火灾数据及森林资源数据 ,对雷击造成的森林火灾的自组织临界性及不同植被类型条件下的自组织临界性作了研究 ,比较了在不同尺度和植被类型条件下火干扰的自组织临界性、自相似性 ,并与传统的森林火灾元胞自动机模型模拟的结果进行比较。结果表明 :中国黑龙江省不同森林类型的火干扰具有自组织临界行为 ,森林可燃物已经达到临界状态 ,其临界值在 1.8~ 2 .86之间 ,具有自相似性 ;当森林的面积过小时 ,森林火灾的“面积 -频率”分布曲线上会出现频率峰 ,表现出“有限面积效应”现象。  相似文献   

4.
秦岭西部山地针叶林凋落物持水特性   总被引:18,自引:0,他引:18  
常雅军  曹靖  马建伟  陈琦  赵琳 《应用生态学报》2008,19(11):2346-2351
采用野外实地观测与室内浸提法,对秦岭西部地区4种主要针叶林(华北落叶松、日本落叶松、粗枝云杉和欧洲云杉)林地凋落物的储量、持水量、持水率和吸水速率进行了研究.结果表明:林龄相近的4种针叶林林下凋落物储量大小依次为粗枝云杉(29.81 t·hm-2)>欧洲云杉(26.17 t·hm-2)>日本落叶松(13.30 t·hm-2)>华北落叶松(8.46 t·hm-2);不同林型不同分解程度凋落物的持水量和持水率与浸泡时间皆呈对数关系,其吸水速率与浸泡时间呈幂函数关系,而各种持水特性与森林类型和凋落物的分解程度无关;研究区4种针叶林半分解层凋落物的持水能力均强于分解层,而落叶松林的持水能力较云杉林强.  相似文献   

5.
Bowman et al. (Journal of Biogeography, 2011, 38 , 2223–2236) attempt a synthesis of the current status of study into human use of fire as an ecosystem management tool and provide a framework for guiding research on the human dimensions of global fire. While we applaud this ambitious effort, we believe the proposed ‘pyric phase and transition’ model to be too deterministic and simplistic to account for the complexity and diversity in human–fire relationships. After reviewing theoretical problems with the proposed framework, we question policy implications of their conclusions concerning tropical forest systems. We suggest that a theoretically informed perspective should build on an historical fire ecology framework for investigating social and ecological aspects of human–environment interactions.  相似文献   

6.
7.
下层土壤容重对玉米生育后期光合特性和产量的影响   总被引:11,自引:0,他引:11  
在耕层(0~20 cm)土壤容重不变情况下,采用池栽方法研究了下层(20~40 cm,40~60 cm)土壤容重变化对玉米生育后期光合特性和产量的影响.结果表明:当下层土壤容重不同时,玉米的光合速率(Pn)和产量都存在显著差异,随着下层土壤容重的增加,叶片Pn和产量降低,下层土壤容重越大,降幅越大.不同处理玉米叶片的Pn和细胞间隙CO2浓度(Ci)的变化趋势不同,Pn早晨和傍晚较低,中午较高,且随着下层土壤容重的增加而降低, Ci的变化趋势则相反.气孔限制值(Ls)和气孔导度(Gs)也随着下层土壤容重的增加而降低. 随着玉米生育进程,Pn、Ls和Gs不断下降,而Ci不断升高.  相似文献   

8.
Fire, being both a natural and cultural phenomenon, presents problems in disentangling the historical effect of humans from that of climate change. Here, we investigate the potential impact of humans on boreal fire regimes from a perspective of fuels, ignitions and culture. Two ways for a low technology culture to impact the fire regime are as follows: (i) by altering the number of ignitions and their spatial distribution and timing and (ii) by hindering fire spread. Different cultures should be expected to have quite different impacts on the fire regimes. In northern Fennoscandia, there is evidence for fire regime changes associated with the following: a reindeer herding culture associated with few ignitions above the natural; an era of cattle husbandry with dramatically increased ignitions and somewhat higher fire frequency; and a timber exploitation era with decreasing fire sizes and diminishing fire frequency. In other regions of the boreal zone, such schemes can look quite different, but we suggest that a close look at the resource extraction and land use of different cultures should be part of any analysis of past fire regimes.  相似文献   

9.
This study shows how high‐resolution (~15 cm) simultaneous colour and infra‐red digital aerial photography can be used to map both fire severity and, particularly, fire extent, in forest in south‐eastern Australia. The results show that this methodology is capable of detecting and mapping burnt and unburnt edges under unaffected forest canopy (i.e. still green) – that is, revealing the mosaic of burnt and unburnt areas that often result from planned landscape burning under mild weather conditions (i.e. with little of the brownish canopy scorch that results from more intense bushfires). This has important implications for both fuel management and ecology. It can answer the basic questions of fire and biodiversity managers following planned burning –’how much of the planned area burnt, and, within the burnt area, what aspects were burnt, and how hot did they burn?’ The analysis of fire extent by aspect showed that about 80% of southern and eastern aspects remained unburnt during broadscale autumn prescribed burning, with many of these moister aspects potentially providing longer unburnt refuges over multiple burn rotations. The fire severity and extent mapping products, produced using the methodology outlined in this study, have the potential to substantially increase the understanding of the ecological and fuel outcomes of landscape‐scale autumn prescribed burning.  相似文献   

10.
Juli G. Pausas 《Oikos》2019,128(2):147-153
Despite the existing large body of research on plant–animal interactions, plant research and animal research are still relatively independent and asymmetrical in relation to disturbance. Animals and plants are likely to have different fire responses, yet biodiversity studies in relation to disturbance may benefit from a more integrated functional approach across kingdoms. This would also force us to go deeper into the biological mechanisms and scales for persistence than a taxonomic‐based classification. An integrated view of plant and animal responses would enable us to learn from a great variety of life forms and benefit from expertise in complementary disciplines. To achieve this integrated view, I propose a functional classification for both plants and animals in relation to their fire response strategy. This classification includes the following strategies: resistance, refugia, avoidance, dormancy, recolonization, crypsis and intolerance. Given the limited knowledge of fire responses for many organisms, and especially for many animals, this classification may require further development. However, it provides a framework that facilitates finding knowledge gaps and directing future research for gaining a better understanding of the role of fire on biodiversity.  相似文献   

11.
Area burned has decreased across Europe in recent decades. This trend may, however, reverse under ongoing climate change, particularly in areas not limited by fuel availability (i.e. temperate and boreal forests). Investigating a novel remote sensing dataset of 64,448 fire events that occurred across Europe between 1986 and 2020, we find a power-law relationship between maximum fire size and area burned, indicating that large fires contribute disproportionally to fire activity in Europe. We further show a robust positive correlation between summer vapor pressure deficit and both maximum fire size (R2 = .19) and maximum burn severity (R2 = .12). Europe's fire regimes are thus highly sensitive to changes in future climate, with the probability for extreme fires more than doubling by the end of the century. Our results suggest that climate change will challenge current fire management approaches and could undermine the ability of Europe's forests to provide ecosystem services to society.  相似文献   

12.
13.
14.
The hypothesized ultimate agent of decline for one of the only two known populations of Euphorbia clivicola R. A. Dyer, a Critically Endangered species endemic to the Northern Province of South Africa, is the unsuitable fire management practised within the Nature Reserve in which the population is protected. Management recommendations concerning the fire regime need to consider fire survival in this succulent species. Fire survival of succulents may be due to the avoidance of fire in refugia or due to fire tolerance by vegetative recovery. Subsequent to a fire, damage to E. clivicola plants was determined. New growth (post-fire resprouting) and rock cover surrounding plants were assessed to determine whether plants tolerated fire through vegetative regrowth or survived fire through protection in refugia. Plants were found to be tolerant of fire, sustaining only mild damage with apparent fire mortality at 3% (2% of the plants were already dead prior to the fire). Fire damage stimulated vegetative regrowth, regrowth being more common in plants that had sustained higher levels of fire damage.  相似文献   

15.
Abstract

Detailed knowledge of factors controlling fire regime is a prerequisite for efficient fire management. We analyzed the fire selectivity of given forest vegetation classes both in terms of fire frequency and fire size for the present fire regime (1982–2005) in Canton Ticino (southern Switzerland). To this end, we investigated the dataset in four categories (all fires, anthropogenic winter fires, anthropogenic summer fires, and natural summer fires) and performed 1000 random Monte Carlo simulations on frequency and size. Anthropogenic winter and summer fires have a similar selectivity, occurring mostly at low elevations in chestnut stands, broadleaved forests, and in the first 50 m from the forest edge. In winter half of the fires in chestnut stands are significantly larger than 1.0 ha and the average burnt area in some coniferous forests tends to be high. Lightning fires seem to occur more frequently in spruce stands and less often in the summer‐humid chestnut and beech stands and the 50–100 m buffer area. In beech forests, in mixed forests, and in the spruce stands affected by natural fire in summer, the fires tend to be small in size. The selectivity observed, especially the selectivity of anthropogenic fires in terms of fire frequency, seems to be also related to geographical parameters such as altitude and aspect, and to anthropogenic characteristics such as closeness to roads or buildings.  相似文献   

16.
Historically unprecedented areas of forest habitat have been impacted by fire, as climate change and other anthropogenic disturbances drive increases in fire burned area and severity. Although 88% of Australia's [threatened] land mammals are threatened by inappropriate fire regimes, calculations of animal mortality resulting from specific events have been impeded by knowledge gaps relating to both the direct (first-order) and long-term (second-order) effects of fire on different species. This study addresses the need for a quantified, mechanistic understanding of first-order effects, presenting an extension of the Fire Research and Modelling Environment (FRaME) to allow prediction of species-specific mortality. FRaME is demonstrated and tested here by replicating an incident in which a prescribed burn caused 77% mortality of a population of the critically endangered ngwayir (Pseudocheirus occidentalis, Pseudocheiridae). FRaME correctly predicted heavy mortality (62–79%) arising from partial and full-thickness burns and asphyxiation due to burns in the respiratory tract. Mortality varied with animal fire-avoidance strategies (p < 0.001) and the thickness of tree hollow walls (r = −0.95, p < 0.001). Although management guidelines specified low intensity fire, mortality had no significant relationship with Byram intensity and larger flames due to ‘torching’ were most frequent when fire spread was slowest. FRaME modelling predicted that individuals would be impacted by temperatures exceeding 500°C for several minutes. Fire management that is premised on discredited notions of fire behaviour and overly simple models can lead to catastrophic management outcomes such as those documented here. FRaME addresses this need by providing a platform to account for heterogeneous fire behaviour as well as animal behaviour and habitat quality, calculating fire risk to fauna and guiding management that maximizes safe habitat.  相似文献   

17.
There is interest in the global community on how fire regimes are changing as a function of changing demographics and climate. The ground-based data to monitor such trends in fire activity are inadequate at the global scale. Satellite observations provide a basis for such a monitoring system. In this study, a set of metrics were developed from 6 years of MODIS active fire data. The metrics were grouped into eight classes representing three axes of fire activity: density, season duration and interannual variability. These groups were compared with biophysical and human explanatory variables on a global scale. We found that more than 30% of the land surface has a significant fire frequency. The most extensive fire class exhibited high fire density, low duration and high variability and was found in boreal and tropical wet and dry environments. A high association was found between population distribution and fire persistence. Low GDP km−2 was associated with fire classes with high interannual variability and low seasonal duration. In areas with more economic resources, fires tend to be more regular and last longer. High fire duration and low interannual variability were associated with croplands, but often with low fire density. The study was constrained by the limited length of satellite data record but is a first step toward developing a comprehensive global assessment of fire regimes. However, more attention is needed by the global observing systems to provide the underpinning socio-economic observations to better quantify and analyze the human characteristics of fire regimes.  相似文献   

18.
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire‐caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre‐fire climatic water deficit was related to increased post‐fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).  相似文献   

19.
Athrotaxis cupressoides is a slow‐growing and long‐lived conifer that occurs in the subalpine temperate forests of Tasmania, a continental island to the south of Australia. In 1960–1961, human‐ignited wildfires occurred during an extremely dry summer that killed many A. cupressoides stands on the high plateau in the center of Tasmania. That fire year, coupled with subsequent regeneration failure, caused a loss of ca. 10% of the geographic extent of this endemic Tasmanian forest type. To provide historical context for these large‐scale fire events, we (i) collected dendroecological, floristic, and structural data, (ii) documented the postfire survival and regeneration of A. cupressoides and co‐occurring understory species, and (iii) assessed postfire understory plant community composition and flammability. We found that fire frequency did not vary following the arrival of European settlers, and that A. cupressoides populations were able to persist under a regime of low‐to‐mid severity fires prior to the 1960 fires. Our data indicate that the 1960 fires were (i) of greater severity than previous fires, (ii) herbivory by native marsupials may limit seedling survival in both burned and unburned A. cupressoides stands, and (iii) the loss of A. cupressoides populations is largely irreversible given the relatively high fuel loads of postfire vegetation communities that are dominated by resprouting shrubs. We suggest that the feedback between regeneration failure and increased flammability will be further exacerbated by a warmer and drier climate causing A. cupressoides to contract to the most fire‐proof landscape settings.  相似文献   

20.
Aim This study aimed to quantify changes in fire severity resulting from the invasion of Australia’s tropical savannas by the African grass Andropogon gayanus Kunth. (gamba grass). Location Mesic savannas of the Northern Territory, Australia. Method Byram’s fire‐line intensity (If), fuel load and architecture, and two post‐fire indicators of fire intensity – scorch height (SH) and char height (CH) of woody vegetation – were determined for fires in native grass savanna and A. gayanus invaded savanna. Leaf scorch is the height at which the fire’s radiant heat browns leaf tissue, and leaf char is the height that radiant heat blackens or consumes leaf tissue and provides an indirect measure of flame height. These data, and 5 years of similar data collected from the Kapalga Fire Project in Kakadu National Park, were used to develop empirical relationships between If and the post‐fire indices of fire intensity. Results A relationship between A. gayanus If and SH could not be developed because complete canopy scorch occurred in most A. gayanus fires, even at low If. In contrast, A. gayanus If was strongly correlated with CH. This empirical relationship was substantially different from that for native grass fires. For a given If, there was a significantly greater CH in invaded sites. This increase in radiant heat is attributable to the increased biomass (mean 3.6 t ha?1 in native grasses compared to 11.6 t ha?1 in A. gayanus) and height (approximately 0.5 m in native grasses compared to 4 m in A. gayanus) of the standing fine fuel. Main conclusion Andropogon gayanus invasion resulted in substantial changes in fire behaviour. This has important regional implications owing to the current (10,000–15,000 km2) and predicted (380,000 km2) area of invasion and the negative consequences for the native savanna biota that has evolved with frequent but relatively low‐intensity fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号