首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
Attine ants cultivate fungi as their most important food source and in turn the fungus is nourished, protected against harmful microorganisms, and dispersed by the ants. This symbiosis evolved approximately 50–60 million years ago in the late Paleocene or early Eocene, and since its origin attine ants have acquired a variety of fungal mutualists in the Leucocoprineae and the distantly related Pterulaceae. The most specialized symbiotic interaction is referred to as “higher agriculture” and includes leafcutter ant agriculture in which the ants cultivate the single species Leucoagaricus gongylophorus. Higher agriculture fungal cultivars are characterized by specialized hyphal tip swellings, so-called gongylidia, which are considered a unique, derived morphological adaptation of higher attine fungi thought to be absent in lower attine fungi. Rare reports of gongylidia-like structures in fungus gardens of lower attines exist, but it was never tested whether these represent rare switches of lower attines to L. gonglyphorus cultivars or whether lower attine cultivars occasionally produce gongylidia. Here we describe the occurrence of gongylidia-like structures in fungus gardens of the asexual lower attine ant Mycocepurus smithii. To test whether M. smithii cultivates leafcutter ant fungi or whether lower attine cultivars produce gongylidia, we identified the M. smithii fungus utilizing molecular and morphological methods. Results shows that the gongylidia-like structures of M. smithii gardens are morphologically similar to gongylidia of higher attine fungus gardens and can only be distinguished by their slightly smaller size. A molecular phylogenetic analysis of the fungal ITS sequence indicates that the gongylidia-bearing M. smithii cultivar belongs to the so-called “Clade 1”of lower Attini cultivars. Given that M. smithii is capable of cultivating a morphologically and genetically diverse array of fungal symbionts, we discuss whether asexuality of the ant host maybe correlated with low partner fidelity and active symbiont choice between fungus and ant mutualists.  相似文献   

2.
Symbiont choice in a fungus-growing ant (Attini, Formicidae)   总被引:2,自引:0,他引:2  
Cultivars of fungus-growing (attine) ants are vertically transmittedthrough inheritance from parent to offspring nest, but horizontalcultivar transfer between ant nests occurs occasionally, resultingin cultivar replacement within ant lineages. Two mechanismscould theoretically prevent the invasion of suboptimal cultivarstrains and thus stabilize ant–cultivar coevolution: first,partner feedback inherent in vertical cultivar transmissionand second, partner (symbiont) choice if the ants differentiatebetween productive and inferior cultivars during replacements.To elucidate the nature of symbiont choice, we presented workersof Cyphomyrmex muelleri with novel cultivars representing aphylogenetic cline of close and distant relatives of the nativeC. muelleri cultivar. Workers invariably preferred their nativecultivar, discriminating against even very close relatives ofthe native cultivar. When given a choice between two non-nativecultivar strains, workers accepted the strain most closely relatedto their native cultivar. Two conclusions emerge. First, colonyswitches to distantly related cultivars are behaviorally unlikelyand may not be preference-based; rather, distant switches mayoccur under constrained choice, such as pathogen-related gardenlosses that force colonies to import novel cultivars. Second,the ability of attine ants to differentiate between closelyrelated cultivar strains suggests that the ant–fungusmutualism is stabilized evolutionarily not only by partner feedbackinherent in vertical cultivar transmission, but possibly alsoby symbiont choice through which the ants select against unwanted,presumably inferior, cultivars. The efficacy of symbiont choicenow needs to be tested experimentally. Such research may benefitfrom application of theory and experimental paradigms that havebeen developed within the areas of mate choice and sexual selection.  相似文献   

3.
To explore landscape genomics at the range limit of an obligate mutualism, we use genotyping‐by‐sequencing (ddRADseq) to quantify population structure and the effect of host–symbiont interactions between the northernmost fungus‐farming leafcutter ant Atta texana and its two main types of cultivated fungus. Genome‐wide differentiation between ants associated with either of the two fungal types is of the same order of magnitude as differentiation associated with temperature and precipitation across the ant's entire range, suggesting that specific ant–fungus genome–genome combinations may have been favoured by selection. For the ant hosts, we found a broad cline of genetic structure across the range, and a reduction of genetic diversity along the axis of range expansion towards the range margin. This population‐genetic structure was concordant between the ants and one cultivar type (M‐fungi, concordant clines) but discordant for the other cultivar type (T‐fungi). Discordance in population‐genetic structures between ant hosts and a fungal symbiont is surprising because the ant farmers codisperse with their vertically transmitted fungal symbionts. Discordance implies that (a) the fungi disperse also through between‐nest horizontal transfer or other unknown mechanisms, and (b) genetic drift and gene flow can differ in magnitude between each partner and between different ant–fungus combinations. Together, these findings imply that variation in the strength of drift and gene flow experienced by each mutualistic partner affects adaptation to environmental stress at the range margin, and genome–genome interactions between host and symbiont influence adaptive genetic differentiation of the host during range evolution in this obligate mutualism.  相似文献   

4.
Switching of symbiotic partners pervades most mutualisms, despite mechanisms that appear to enforce partner fidelity. To investigate the interplay of forces binding and dissolving mutualistic pairings, we investigated partner fidelity at the population level in the attine ant-fungal cultivar mutualism. The ants and their cultivars exhibit both broad-scale co-evolution, as well as cultivar switching, with short-term symbiont fidelity maintained by vertical transmission of maternal garden inoculates via dispersing queens and by the elimination of alien cultivar strains. Using microsatellite markers, we genotyped cultivar fungi associated with five co-occurring Panamanian attine ant species, representing the two most derived genera, leaf-cutters Atta and Acromyrmex. Despite the presence of mechanisms apparently ensuring the cotransmission of symbiont genotypes, different species and genera of ants sometimes shared identical fungus garden genotypes, indicating widespread cultivar exchange. The cultivar population was largely unstructured with respect to host ant species, with only 10% of the structure in genetic variance being attributable to partitioning among ant species and genera. Furthermore, despite significant genetic and ecological dissimilarity between Atta and Acromyrmex, generic difference accounted for little, if any, variance in cultivar population structure, suggesting that cultivar exchange dwarfs selective forces that may act to create co-adaptive ant-cultivar combinations. Thus, binding forces that appear to enforce host fidelity are relatively weak and pairwise associations between cultivar lineages and ant species have little opportunity for evolutionary persistence. This implicates that mechanisms other than partner fidelity feedback play important roles in stabilizing the leafcutter ant-fungus mutualism over evolutionary time.  相似文献   

5.
A century of research on fungus-growing ants (Attini, Formicidae) has ignored the cultivated fungi as passive domesticates and viewed the attine fungicultural symbiosis as an integrated unit dominated by the evolutionary interests of the ant farmers. This article takes a different perspective and explores first the evolutionary interests and leverages of the fungal cultivars, then dissects eight potential evolutionary conflicts between ants and cultivars. Three types of ant-cultivar conflict are examined in depth. First, ant-cultivar conflict over the ant sex ratio is predicted because the cultivars are dispersed by female foundresses but not by males; cultivars thus may be selected to bias the ant sex ratio toward females. Second, ant-cultivar conflict over fungal sexual reproduction exists if the fungi are able to escape from the symbiosis and live independently, as is implied by phylogenetic analyses of the fungi; this conflict is exacerbated in colonies that experience queen death or senescence. A literature review reveals that sexual fruiting of attine cultivars is more common than has been traditionally realized and often occurs in moribund colonies. Third, the routine transplanting of fungal mycelium by ants could generate, through sensory-biased symbiont choice, selection favoring fungal features that increase the likelihood of transplantation within nests (symbiont drive) but that are detrimental to the survival of the whole colony. A balanced perspective incorporating both ant and fungal interests emerges as a more appropriate framework than the traditional myrmicocentric perspective. Indeed, the attine symbiosis offers unique experimental opportunities (cultivar switch experiments) to unravel the evolutionary dynamics of conflict and cooperation between ant and fungal partners.  相似文献   

6.
Fungus‐growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher‐attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher‐attine ants have enhanced activity of protein‐digesting enzymes, whereas gardens of leaf‐cutting ants also have increased activity of starch‐digesting enzymes. However, the enzyme activities of lower‐attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher‐attine and leaf‐cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower‐attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.  相似文献   

7.
To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus‐growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher‐attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower‐attine lineages. Higher‐attine fungi form two clades, Clade‐A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade‐B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade‐A fungi because some leafcutter species ranging across South America cultivate Clade‐B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade‐B fungi because some Trachymyrmex species cultivate Clade‐A fungi and other Trachymyrmex species cultivate fungi known so far only from lower‐attine ants; (iii) in some locations, single higher‐attine ant species or closely related cryptic species cultivate both Clade‐A and Clade‐B fungi; and (iv) ant–fungus co‐evolution among higher‐attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade‐A or Clade‐B fungi, sustaining with either cultivar‐type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade‐A or Clade‐B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade‐A), but must derive from ant–fungus synergisms and unique ant adaptations.  相似文献   

8.
The fungus‐growing ants and their fungal cultivars constitute a classic example of a mutualism that has led to complex coevolutionary dynamics spanning c. 55–65 Ma. Of the five agricultural systems practised by fungus‐growing ants, higher‐attine agriculture, of which leaf‐cutter agriculture is a derived subset, remains poorly understood despite its relevance to ecosystem function and human agriculture across the Neotropics and parts of North America. Among the ants practising higher‐attine agriculture, the genus Trachymyrmex Forel, as currently defined, shares most‐recent common ancestors with both the leaf‐cutter ants and the higher‐attine genera Sericomyrmex Mayr and Xerolitor Sosa‐Calvo et al. Although previous molecular‐phylogenetic studies have suggested that Trachymyrmex is a paraphyletic grade, until now insufficient taxon sampling has prevented a full investigation of the evolutionary history of this group and limited the possibility of resolving its taxonomy. Here we describe the results of phylogenetic analyses of 38 Trachymyrmex species, including 27 of the 49 described species and at least 11 new species, using four nuclear markers, as well as phylogenetic analyses of the fungi cultivated by 23 species of Trachymyrmex using two markers. We generated new genetic data for 112 ants (402 new gene sequences) and 95 fungi (153 new gene sequences). Our results corroborate previous findings that Trachymyrmex, as currently defined, is paraphyletic. We propose recognizing two new genera, Mycetomoellerius gen.n. and Paratrachymyrmex gen.n. , and restricting the continued use of Trachymyrmex to the clade of nine largely North American species that contains the type species [Trachymyrmex septentrionalis (McCook)] and that is the sister group of the leaf‐cutting ants. Our fungal cultivar phylogeny generally corroborates previously observed broad patterns of ant–fungus association, but it also reveals further violations of those patterns. Higher‐attine fungi are divided into two groups: (i) the single species Leucoagaricus gongylophorus (Möller); and (ii) its sister clade, consisting of multiple species, recently referred to as Leucoagaricus Singer ‘clade B’. Our phylogeny indicates that, although most non‐leaf‐cutting higher‐attine ants typically cultivate species in clade B, some species cultivate L. gongylophorus, whereas still others cultivate fungi typically associated with lower‐attine agriculture. This indicates that the attine agricultural systems, which are currently defined by associations between ants and fungi, are not entirely congruent with ant and fungal phylogenies. They may, however, be correlated with as yet poorly understood biological traits of the ants and/or of their microbiomes.  相似文献   

9.
10.
The attine ants are a monophyletic lineage that switched to fungus farming ca. 55–60 MYA. They have become a model for the study of complex symbioses after additional fungal and bacterial symbionts were discovered, but their abdominal endosymbiotic bacteria remain largely unknown. Here, we present a comparative microbiome analysis of endosymbiotic bacteria spanning the entire phylogenetic tree. We show that, across 17 representative sympatric species from eight genera sampled in Panama, abdominal microbiomes are dominated by Mollicutes, α‐ and γ‐Proteobacteria, and Actinobacteria. Bacterial abundances increase from basal to crown branches in the phylogeny reflecting a shift towards putative specialized and abundant abdominal microbiota after the ants domesticated gongylidia‐bearing cultivars, but before the origin of industrial‐scale farming based on leaf‐cutting herbivory. This transition coincided with the ancestral single colonization event of Central/North America ca. 20 MYA, documented in a recent phylogenomic study showing that almost the entire crown group of the higher attine ants, including the leaf‐cutting ants, evolved there and not in South America. Several bacterial species are located in gut tissues or abdominal organs of the evolutionarily derived, but not the basal attine ants. The composition of abdominal microbiomes appears to be affected by the presence/absence of defensive antibiotic‐producing actinobacterial biofilms on the worker ants' cuticle, but the significance of this association remains unclear. The patterns of diversity, abundance and sensitivity of the abdominal microbiomes that we obtained explore novel territory in the comparative analysis of attine fungus farming symbioses and raise new questions for further in‐depth research.  相似文献   

11.
Reynolds HT  Currie CR 《Mycologia》2004,96(5):955-959
Fungi in the genus Escovopsis are known only from the fungus gardens of attine ants. Previous work has established that these anamorphic fungi, allied with the Hypocreales, are specialized and potentially virulent parasites of the ancient mutualism between attine ants and their fungal cultivars. It is unclear whether the primary nutrient source for the pathogen is the mutualist fungal cultivar or the vegetative substrate placed on the gardens by the ants. Here, we determine whether Escovopsis weberi is a parasite of the fungal cultivar, a competitor for the leaf substrate, or both. Bioassays reveal that E. weberi exhibits rapid growth on pure cultivar and negligible growth on sterilized leaf fragments. Light microscopy examination of hyphalhyphal interactions between E. weberi and the ant fungal cultivar indicate that E. weberi, unlike invasive necrotrophs that always penetrate host hyphae, can secrete compounds that break down host mycelium before contact occurs. Thus, E. weberi is a necrotrophic parasite of the fungal cultivar of attine ants.  相似文献   

12.
Fungus-growing attine ants maintain a mutualistic relationship with basidiomycete fungi which they cultivate for food. In addition to the fungal partner, attine ant colonies harbor a myriad of microorganisms, including the genus Escovopsis, fungal parasites of the ant crops. Because Escovopsioides nivea is phylogenetically close to Escovopsis, previous studies assumed it has a negative interaction in the ant-fungus association. Here, we present an extended phylogeny of E. nivea based on new collections from different attine ant genera found in different localities. We also carried out co-culture experiments between E. nivea with different fungal cultivars. Our results suggest E. nivea is a symbiont of attine ant colonies, which inhibits the growth of fungal crops, supporting the hypothesis it is antagonistic to the system. However, the patterns of interaction between E. nivea and fungal crops differ from those shown by Escovopsis, suggesting a different evolution from that of the parasite.  相似文献   

13.
1. Variation and control of nutritional input is an important selective force in the evolution of mutualistic interactions and may significantly affect coevolutionary modifications in partner species. 2. The attine fungus‐growing ants are a tribe of more than 230 described species (12 genera) that use a variety of different substrates to manure the symbiotic fungus they cultivate inside the nest. Common ‘wisdom’ is that the conspicuous leaf‐cutting ants primarily use freshly cut plant material, whereas most of the other attine species use dry and partly degraded plant material such as leaf litter and caterpillar frass, but systematic comparative studies of actual resource acquisition across the attine ants have not been done. 3. Here we review 179 literature records of diet composition across the extant genera of fungus‐growing ants. The records confirm the dependence of leaf‐cutting ants on fresh vegetation but find that flowers, dry plant debris, seeds (husks), and insect frass are used by all genera, whereas other substrates such as nectar and insect carcasses are only used by some. 4. Diet composition was significantly correlated with ant substrate preparation behaviours before adding forage to the fungus garden, indicating that diet composition and farming practices have co‐evolved. Neither diet nor preparation behaviours changed when a clade within the paleoattine genus Apterostigma shifted from rearing leucocoprinous fungi to cultivating pterulaceous fungi, but the evolutionary derived transition to yeast growing in the Cyphomyrmex rimosus group, which relies almost exclusively on nectar and insect frass, was associated with specific changes in diet composition. 5. The co‐evolutionary transitions in diet composition across the genera of attine ants indicate that fungus‐farming insect societies have the possibility to obtain more optimal fungal crops via artificial selection, analogous to documented practice in human subsistence farming.  相似文献   

14.
While past work has often examined the effects of transmission mode on virulence evolution in parasites, few studies have explored the impact of horizontal transmission on the evolution of benefits conferred by a symbiont to its host. Here, we identify three mechanisms that create a positive covariance between horizontal transmission and symbiont‐provided benefits: pleiotropy within the symbiont genome, partner choice by the host, and consumption of host waste by‐products by symbionts. We modify a susceptible‐infected model to incorporate the details of each mechanism and examine the evolution of symbiont benefits given variation in either the immigration rate of susceptible hosts or the rate of successful vertical transmission. We find conditions for each case under which greater opportunity for horizontal transmission (higher migration rate) favors the evolution of mutualism. Further, we find the surprising result that vertical transmission can inhibit the evolution of benefits provided by symbionts to hosts when horizontal transmission and symbiont‐provided benefits are positively correlated. These predictions may apply to a number of natural systems, and the results may explain why many mutualisms that rely on partner choice often lack a mechanism for vertical transmission.  相似文献   

15.
Bacterial symbionts are important fitness determinants of insects. Some hosts have independently acquired taxonomically related microbes to meet similar challenges, but whether distantly related hosts that live in tight symbiosis can maintain similar microbial communities has not been investigated. Varying degrees of nest sharing between Megalomyrmex social parasites (Solenopsidini) and their fungus‐growing ant hosts (Attini) from the genera Cyphomyrmex, Trachymyrmex and Sericomyrmex allowed us to address this question, as both ant lineages rely on the same fungal diet, interact in varying intensities and are distantly related. We used tag‐encoded FLX 454 pyrosequencing and diagnostic PCR to map bacterial symbiont diversity across the Megalomyrmex phylogenetic tree, which also contains free‐living generalist predators. We show that social parasites and hosts share a subset of bacterial symbionts, primarily consisting of Entomoplasmatales, Bartonellaceae, Acinetobacter, Wolbachia and Pseudonocardia and that Entomoplasmatales and Bartonellaceae can co‐infect specifically associated combinations of hosts and social parasites with identical 16S rRNA genotypes. We reconstructed in more detail the population‐level infection dynamics for Entomoplasmatales and Bartonellaceae in Megalomyrmex symmetochus guest ants and their Sericomyrmex amabilis hosts. We further assessed the stability of the bacterial communities through a diet manipulation experiment and evaluated possible transmission modes in shared nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional benefits from bacterial symbiont transfer even when they are not closely related.  相似文献   

16.
The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus‐growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiotics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to be a hallmark of evolutionary stability, but this notion has been challenged by culturing and sequencing data indicating an unpredictably high diversity. We used 454 pyrosequencing of 16S rRNA to estimate the diversity of the cuticular bacterial community of the leaf‐cutting ant Acromyrmex echinatior and other fungus‐growing ants from Gamboa, Panama. Both field and laboratory samples of the same colonies were collected, the latter after colonies had been kept under laboratory conditions for up to 10 years. We show that bacterial communities are highly colony‐specific and stable over time. The majority of colonies (25/26) had a single dominant Pseudonocardia strain, and only two strains were found in the Gamboa population across 17 years, confirming an earlier study. The microbial community on newly hatched ants consisted almost exclusively of a single strain of Pseudonocardia while other Actinobacteria were identified on older, foraging ants in varying but usually much lower abundances. These findings are consistent with recent theory predicting that mixtures of antibiotic‐producing bacteria can remain mutualistic when dominated by a single vertically transmitted and resource‐demanding strain.  相似文献   

17.

Background

Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth.

Results

We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade.

Conclusions

Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.
  相似文献   

18.
Asexual reproduction imposes evolutionary handicaps on asexual species, rendering them prone to extinction, because asexual reproduction generates novel genotypes and purges deleterious mutations at lower rates than sexual reproduction. Here, we report the first case of complete asexuality in ants, the fungus-growing ant Mycocepurus smithii, where queens reproduce asexually but workers are sterile, which is doubly enigmatic because the clonal colonies of M. smithii also depend on clonal fungi for food. Degenerate female mating anatomy, extensive field and laboratory surveys, and DNA fingerprinting implicate complete asexuality in this widespread ant species. Maternally inherited bacteria (e.g. Wolbachia, Cardinium) and the fungal cultivars can be ruled out as agents inducing asexuality. M. smithii societies of clonal females provide a unique system to test theories of parent–offspring conflict and reproductive policing in social insects. Asexuality of both ant farmer and fungal crop challenges traditional views proposing that sexual farmer ants outpace coevolving sexual crop pathogens, and thus compensate for vulnerabilities of their asexual crops. Either the double asexuality of both farmer and crop may permit the host to fully exploit advantages of asexuality for unknown reasons or frequent switching between crops (symbiont reassociation) generates novel ant–fungus combinations, which may compensate for any evolutionary handicaps of asexuality in M. smithii.  相似文献   

19.
The fungal cultivars of fungus‐growing ants are vertically transmitted by queens but not males. Selection would therefore favor cultivars that bias the ants’ sex ratio towards gynes, beyond the gyne bias that is optimal for workers and queens. We measured sex allocation in 190 colonies of six sympatric fungus‐growing ant species. As predicted from relatedness, female bias was greater in four singly mated Sericomyrmex and Trachymyrmex species than in two multiply mated Acromyrmex species. Colonies tended to raise mainly a single sex, which could be partly explained by variation in queen number, colony fecundity, and fungal garden volume for Acromyrmex and Sericomyrmex, but not for Trachymyrmex. Year of collection, worker number and mating frequency of Acromyrmex queens did not affect the colony sex ratios. We used a novel sensitivity analysis to compare the population sex allocation ratios with the theoretical queen and worker optima for a range of values of k, the correction factor for sex differences in metabolic rate and fat content. The results were consistent with either worker or queen control, but never with fungal control for any realistic value of k. We conclude that the fungal symbiont does not distort the ants’ sex ratio in these species.  相似文献   

20.
Army ants and their arthropod symbionts represent one of the most species‐rich animal associations on Earth, and constitute a fascinating example of diverse host–symbiont interaction networks. However, despite decades of research, our knowledge of army ant symbionts remains fragmentary due to taxonomic ambiguity and the inability to study army ants in the laboratory. Here, we present an integrative approach that allows us to reliably determine species boundaries, assess biodiversity, match different developmental stages and sexes, and to study the life cycles of army ant symbionts. This approach is based on a combination of community sampling, DNA barcoding, morphology and physiology. As a test case, we applied this approach to the staphylinid beetle genus Vatesus and its different Eciton army ant host species at La Selva Biological Station, Costa Rica. DNA barcoding led to the discovery of cryptic biodiversity and, in combination with extensive community sampling, revealed strict host partitioning with no overlap in host range. Using DNA barcoding, we were also able to match the larval stages of all focal Vatesus species. In combination with studies of female reproductive physiology, this allowed us to reconstruct almost the complete life cycles of the different beetle species. We show that Vatesus beetles are highly adapted to the symbiosis with army ants, in that their reproduction and larval development are synchronized with the stereotypical reproductive and behavioural cycles of their host colonies. Our approach can now be used to study army ant‐symbiont communities more broadly, and to obtain novel insights into co‐evolutionary and ecological dynamics in species‐rich host–symbiont systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号