首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
B Vilsen 《FEBS letters》1992,314(3):301-307
Site-specific mutagenesis was used to analyse the functional roles of the residues Pro328 and Leu332 located in the conserved PEGLL motif of the predicted transmembrane helix M4 in the alpha 1-subunit of the ouabain resistant rat kidney Na+,K(+)-ATPase. cDNAs encoding either of the Na+,K(+)-ATPase mutants Pro328-->Ala and Leu332-->Ala, and wild type, were cloned into the expression vector pMT2 and transfected into COS-1 cells. Ouabain-resistant clones growing in the presence of 10 microM ouabain were isolated, and the Na+,K+, ATP and pH dependencies of the Na+,K(+)-ATPase activity measured in the presence of 10 microM ouabain were analysed. Under these conditions the exogenous expressed Na+,K(+)-ATPase contributed more than 95% of the Na+,K(+)-ATPase activity. The Pro328-->Ala mutant displayed a reduced apparent affinity for Na+ (K0.5 (Na+) 13.04 mM), relative to the wild type (K0.5 (Na+) 7.13 mM). By contrast, the apparent affinity for Na+ displayed by the Leu332-->Ala mutant was increased (K0.5 (Na+) 3.92 mM). Either of the mutants exhibited lower apparent affinity for K+ relative to the wild type (K0.5 (K+) 2.46 mM for Pro328-->Ala and 1.97 mM for Leu332-->Ala, compared with 0.78 mM for wild type). Both mutants exhibited higher apparent affinity for ATP than the wild type (K0.5 (ATP) 0.086 mM for Pro328-->Ala and 0.042 mM for Leu332-->Ala, compared with 0.287 mM for wild type). The influence of pH was in accordance with an acceleration of the E2 (K)-->E1 transition in the mutants relative to the wild type. These data are consistent with a role of Pro328 and Leu332 in the stabilization of the E2 form and of Pro328 in Na+ binding. The possible role of the mutated residues in K+ binding is discussed.  相似文献   

2.
Two molecular forms of the (Na+,K+)-ATPase catalytic subunit have been identified in rat adipocyte plasma membranes using immunological techniques. The similarity between these two forms and those in brain (Sweadner, K. J. (1979) J. Biol. Chem. 254, 6060-6067) led us to use the same nomenclature: alpha and alpha(+). The K0.5 values of each form for ouabain (determined by inhibition of phosphorylation of the enzyme from [gamma-32P]ATP) were 3 X 10(-7)M for alpha(+) and 1 X 10(-5)M for alpha. These numbers correlate well with the K0.5 values for the two ouabain-inhibitable components of 86Rb+/K+ pumping in intact cells (1 X 10(-7) M and 4 X 10(-5)M). Quantitation of the Na+ pumps in plasma membranes demonstrated a total of 11.5 +/- 0.2 pmol/mg of membrane protein, of which 8.5 +/- 0.3 pmol/mg, or 75%, was alpha(+). Insulin stimulation of 86Rb+/K+ uptake in rat adipocytes was abolished by ouabain at a concentration sufficient to inhibit only alpha(+)(2-5 X 10(-6)M). Immunological techniques and ouabain inhibition of catalytic labeling of the enzyme from [gamma-32P]ATP demonstrated that alpha(+) was present in skeletal muscle membranes as well as in adipocyte membranes, but was absent from liver membranes. Since insulin stimulates increased Na+ pump activity in adipose and muscle tissue but not in liver, there is a correlation between hormonal regulation of (Na+,K+)-ATPase and the presence of alpha(+). We propose that alpha(+) is the hormonally-sensitive version of the enzyme.  相似文献   

3.
[3H]Ouabain binding to intact MDCK (cultured monolayers of dog kidney) cells of 60 serial passages is dependent upon ouabain concentration, time and medium K+. By utilising high K+ incubations to estimate non-specific [3H]ouabain-binding, the concentration of ouabain giving half maximal specific binding was estimated to be 1.0 . 10(-7) M and the total maximum binding to be 2.33 . 10(5) sites/cell. Ouabain inhibition of (Na+, K+)-pump function was monitored by the cellular uptake of 86Rb over 5 min. The larger fraction of 86Rb uptake was ouabain sensitive and the ouabain concentration giving half-maximal inhibition was 2 . 10(-7) M. The cellular distribution of the (Na+ + K+)-ATPase was investigated using [3H]ouabain autoradiography of intact freeze-dried epithelial monolayers of MDCK cells grown upon millipore filter supports. Binding of [3H]ouabain is localised over the lateral cellular membranes. Autoradiographic silver grain density is close to background levels over both the apical and basal (attachment) membranes.  相似文献   

4.
The adaptation of the myocardium to mechanical overload which results in cardiac hypertrophy involves several membrane functions. The digitalis receptor in sarcolemma vesicles from hypertrophied rat hearts is characterized by binding of [3H]ouabain and ouabain-induced inhibition of (Na+,K+)-ATPase. The results show the existence of two families of ouabain binding sites with apparent dissociation constants (Kd) of 1.8-3.2 X 10(-8) M and 1-8 X 10(-6) M, respectively, which are similar to those found in normal hearts. The presence of the high affinity receptor in hypertrophied rat heart is correlated to a detectable inhibition of the (Na+,K+)-ATPase (IC50 = 1-3 X 10(-8) M). However, the high and low affinity sites in hypertrophied hearts bind and release ouabain at 4-5-fold slower rates than the corresponding sites in normal hearts. These properties are similar to that we observed in newborn rat cardiac preparations. Taken together with the expression of myosin isoforms (Schwartz, K., Lompre, A.M., Bouveret, P., Wisnewsky, C., and Whalen, R.G. (1982) J. Biol. Chem. 23, 14412-14418), our data show that the physiological adaptation of the heart also involves the resurgence of the neonatal forms of the digitalis receptor.  相似文献   

5.
Palytoxin (about 1 pM) increases the permeability of human erythrocytes. We now report its radiolabeling with 125I, followed by affinity purification on porcine kidney membranes. The resulting ligand binds fast and reversibly to intact erythrocytes. The Kd from velocity and equilibrium measurements is 2 X 10(-11) M, and the number of binding sites about 200 per cell. Binding is promoted by divalent cations (Ca2+ greater than Sr2+ greater than Ba2+) and by borate. It is inhibited by K+ (IC50 2 mM), ouabain (IC50 3 X 10(-9) M) and ouabagenin (IC50 6 X 10(-6) M). Conversely, [3H]ouabain is displaced by the substances and concentrations mentioned, and also by palytoxin (Ki 3 X 10(-11) M). Dog erythrocytes, which are known to possess a very low (Na+ + K+)-ATPase activity, are resistant to and lack specific binding sites for palytoxin. Binding of 125I-palytoxin, like that of [3H]ouabain, depends on the state of (Na+ + K+)-ATPase. ATP depletion decreases binding of both ligands to erythrocytes. Binding of 125I-palytoxin and [3H]ouabain to red cell stroma is partially restored by ATP. In contrast to [3H]ouabain, binding of 125I-palytoxin to red cell stroma is not promoted by Mg2+ and Pi. The data show that (a) all known promoters and inhibitors of palytoxin action on human red cells do so by enhancing or decreasing its binding, (b) (Na+ + K+)-ATPase serves as a receptor for palytoxin, and (c) the antagonism by ouabain is competitive at the receptor level. They support our previous hypothesis that palytoxin increases human erythrocyte permeability by formation of pores through (Na+ + K+)-ATPase or its close vicinity.  相似文献   

6.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

7.
The cDNAs encoding alpha 3-subunits of rat brain Na+,K+-ATPase and the neomycin resistance gene were incorporated into BALB/c 3T3 cells by the co-transfection method. Stably transformed cells were selected with 300 micrograms/ml of neomycin (G-418) for 6 weeks. Northern blot analysis using the 3'-non-translated region of the cDNA as a probe revealed that the alpha 3 mRNA appeared in transfected cells. Na+,K+-ATPase activity of the transfected cells was twice that of wild-type cells. Regarding ouabain sensitivity, the Na+,K+-ATPase showed two Ki values for ouabain (8 x 10(-8) and 4.5 x 10(-5) M) in transfected cells while wild-type cells displayed only the higher value. Ouabain sensitivity of Rb+ uptake also demonstrated two Ki values in the transfected cells (8 x 10(-8) and 4 x 10(-5) M) and a Ki in wild-type cells of 4 x 10(-5) M. It is concluded that alpha 3 is a highly ouabain-sensitive catalytic subunit of Na+,K+-ATPase. It is also suggested that ouabain sensitivity is exclusively determined by the properties of the alpha-subunit rather than the beta-subunit. This is the first report on the catalytic characteristics of the alpha 3 isoform of Na+,K+-ATPase.  相似文献   

8.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na+ +K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na+ +K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2 X 10(-6)M. Neuro-2A cells contain (3.5 +/- 0.7) X 10(5) ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7 +/- 0.4) X 10(-20) mol K+/min per copy of (Na+ +K+)-ATPase at room temperature.  相似文献   

9.
A R Robbins  R M Baker 《Biochemistry》1977,16(23):5163-5168
Membrane preparations from two independent ouabain-resistant HeLa cell clones, HI-B1 and HI-C1, each appear to contain two species of (Na,K)ATPase. Two-thirds of the total (Na,K)ATPase in each mutant is indistinguishable from the enzyme in preparations of wild type cells with respect to ouabain binding, ouabain inhibition of (Na,K)ATPase activity, and dependence of ATP hydrolysis on Na, Mg, K, and ATP concentration. The remaining (Na,K)ATPase activity in the mutants is up to 1000 and 10 000 times, respectively, more resistant to ouabain than wild type enzyme. Resistance results from a lower affinity of the mutant enzymes for the inhibitor. The presence of Na, K, or Mg has little or no effect on the degree of resistance expressed by the mutant enzymes, although the resistance of the wild type enzyme varies 400-fold in the presence of different ligands. Incubation with 5 X 10(-8) M ouabain abolishes the activity of the wild type enzyme without affecting the activity of the resistant enzymes. Using this procedure we compared the parameters of ATP hydrolysis via the resistant and wild type enzymes. Ouabain-resistant (Na,K)ATPase of HI-C1 has an apparent K0.5 for potassium 3-4 times higher than that of either wild type enzyme or the resistant enzyme of HI-B1.  相似文献   

10.
Analysis of sodium-22 binding to purified sodium + potassium ion-activated adenosine triphosphatase (Na+, K+)-ATPase reveals the presence of two classes of binding sites. The higher affinity site (Kd = 0.2 mM) binds 6 to 7 nmol of sodium per mg of protein. Pretreatment of (Na+, K+)-ATPase with ouabain blocks the binding of sodium to this higher affinity site. Neither heat-denatured enzyme nor phospholipids extracted from the (Na+, K+)-ATPase contain a ouabain-inhibitable, higher affinity sodium binding site. The ouabain enzyme complex therefore appears to contain altered binding sites for cations.  相似文献   

11.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

12.
Adenovirus-dependent release of choline phosphate from KB cells at pH 6.0 was partially blocked by ouabain. In K+-containing medium, maximum inhibition of release was obtained by 10(-5) M ouabain and half-maximal inhibition was achieved by about 0.5 X 10(-6)M ouabain. Ouabain did not block either the binding or the uptake of adenovirus by KB cells. Without K+, about 25% of cell-associated choline phosphate was released by adenovirus, whereas with 1 mM K+ about 50% was released. This activation by K+ was blocked by 0.1 mM ouabain. HeLa cells behaved like KB cells, but a mutant of HeLa cells resistant to ouabain (D98-OR) released much lower amounts of choline phosphate in response to human adenovirus type 2 (Ad2). Wild-type D98-OR cells bound nearly the same amount of adenovirus as did normal HeLa cells. Ad2 also increased the activity of Na+,K+-ATPase in KB cells, with maximum activation at 50 micrograms of Ad2 per ml. In D98-OR cells, Ad2 failed to activate Na+,K+-ATPase activity. Ad2-dependent lysis of endocytic vesicles (receptosomes) was assayed by measuring Ad2-dependent enhancement of epidermal growth factor-Pseudomonas exotoxin toxicity. This action of adenovirus was increased when K+ was present in the medium. Under the conditions used, K+ had no effect on the amount of Ad2 or epidermal growth factor taken up by the cells. On the basis of these results, it is suggested that Ad2-dependent cellular efflux of choline phosphate and adenovirus-dependent lysis of receptosomes may require Na+,K+-ATPase activity.  相似文献   

13.
14.
The biochemical and pharmacological properties of the (Na+,K+)-ATPase have been studied at different stages of chick embryonic heart development in ovo and under cell culture conditions. The results show the existence of two families of ouabain binding sites: a low affinity binding site with a dissociation constant (Kd) of 2-6 microM for the ouabain-receptor complex and a high affinity binding site with a Kd of 26-48 nM. Levels of high affinity sites gradually decrease during cardiac ontogenesis to reach a plateau near 14 days of development. Conversely the number of low affinity binding sites is essentially invariant between 5 days and hatching. Cultured cardiac cells display the same binding characteristics as those found in intact ventricles. Inhibition of 86Rb+ uptake in cultured cardiac cells and an increase in intracellular Na+ concentration, due to (Na+,K+)-ATPase blockade, occur in a ouabain concentration range corresponding to the saturation of the low affinity ouabain site. Ouabain-stimulated 45Ca2+ uptake increases in parallel with the increase in the intracellular Na+ concentration. It is suppressed in Na+-free medium or when Na+ is replaced by Li+ suggesting that the increase is due to the indirect activation of the Na+/Ca2+ exchange system in the plasma membrane. Dose-response curves for the inotropic effects of ouabain on papillary muscle and on ventricular cells in culture indicate that the development of the cardiotonic properties is parallel to the saturation of the low affinity binding site for ouabain. Therefore, inhibition of the cardiac (Na+,K+)-ATPase corresponding to low affinity ouabain binding sites seems to be responsible for both the cardiotonic and cardiotoxic effects of the drug.  相似文献   

15.
Insulin stimulated the uptake of 86Rb+ (a K+ analog) in rat adipocytes and increased the steady state concentration of intracellular potassium. Half-maximal stimulation occurred at an insulin concentration of 200 pM. Both basal- and insulin-stimulated 86Rb+ transport rates depended on the concentration of external K+, external Na+, and were 90% inhibited by 10(-3) M ouabain and 10(-3) M KCN, indicating that the hormone was activating the (Na+,K+)-ATPase. Insulin had no effect on the entry of 22Na+ or exit of 86Rb+. Kinetic analysis demonstrated that insulin acted by increasing the maximum velocity, Vmax, of 86Rb+ entry. Inhibition of the rate of Rb+ uptake by ouabain was best described by a biphasic inhibition curve. Scatchard analysis of ouabain binding to intact cells indicated binding sites with multiple affinities. Only the rubidium transport sites which exhibited a high affinity for ouabain were stimulated by insulin. Stimulation required insulin binding to an intact cell surface receptor, as it was reversible by trypsinization. We conclude that the uptake of 86Rb+ by the (Na+,K+)-ATPase is an insulin-sensitive membrane transport process in the fat cell.  相似文献   

16.
Cloned cDNA encoding the so-far uncharacterized alpha-3 subunit of rat brain Na+,K+-ATPase (Hara et al. (1987) J. Biochem. 102, 43-58, Shull et al. (1986) Biochemistry 25, 8125-8132) was incorporated into a vector carrying the SP6 promoter. The mRNA produced in vitro was injected into Xenopus oocytes with the mRNA encoding the Na+,K+-ATPase beta subunit of Torpedo electroplax. Increased Na+,K+-ATPase activity in the oocyte membrane was observed. This newly expressed activity was inhibited by ouabain (Ki = 1.5 x 10(-7) M), suggesting that the alpha-3 subunit of rat brain Na+,K+-ATPase is a highly ouabain-sensitive catalytic subunit.  相似文献   

17.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

18.
A multistep selection for ouabain resistance was used to isolate a clone of HeLa S3 cells that overproduces the plasma membrane sodium, potassium activated adenosinetriphosphatase (Na+,K+-ATPase). Measurements of specific [3H]ouabain-binding to the resistant clone, C+, and parental HeLa cells indicated that C+ cells contain 8-10 X 10(6) ouabain binding sites per cell compared with 8 X 10(5) per HeLa cell. Plasma membranes isolated from C+ cells by a vesiculation procedure and analyzed for ouabain-dependent incorporation of [32P]phosphate into a 100,000-mol-wt peptide demonstrated a ten- to twelvefold increase in Na+,K+-ATPase catalytic subunit. The affinity of the enzyme for ouabain on the C+ cells was reduced and the time for half maximal ouabain binding was increased compared with the values for the parental cells. The population doubling time for cultures of C+ cells grown in dishes was increased and C+ cells were unable to grow in suspension. Growth of C+ cells in ouabain-free medium resulted in revertant cells, C-, with biochemical and growth properties identical with HeLa. Karyotype analysis revealed that the ouabain-resistant phenotype of the C+ cells was associated with the presence of minute chromosomes which are absent in HeLa and C- cells. This suggests that a gene amplification event is responsible for the Na+,K+-ATPase increase in C+ cells.  相似文献   

19.
A procedure is described for preparation of highly active (Na+,K+)-ATPase from rat heart which has a specific activity of 200-600 mumol Pi/mg/h. The procedure is simple and can be applied to small amounts of heart muscle (approximately 1 g). The ATPase activity was more than 90% sensitive to ouabain (at concentrations up to 1 mM). The ouabain sensitivity is biphasic with about 20% of the ATPase activity being inhibited at approximately 3 X 10(-7) M ouabain.  相似文献   

20.
A cDNA encoding the beta-subunit of the (Na+ + K+)-ATPase was cloned from a chicken brain cDNA library, and its nucleotide sequence was determined. High cross-species sequence homologies were found both in coding and noncoding regions. The cDNA was subcloned into a shuttle vector derived from pSV2CAT and was stably incorporated into mouse Ltk-cells. The avian beta-subunit was expressed on the cell surface (1-8 X 10(5) molecules/cell) complexed with alpha-subunits of the murine (Na+ + K+)-ATPase. In the hybrid system there was rapid assembly of subunits, post-translational N-glycosylations of the beta-subunit at its three Asn-X-Ser (or Thr) positions, and modification of high mannose oligosaccharides to complex type. Avian beta-subunits expressed in the mouse cells had an apparent molecular weight of about 55,000 as compared with 47,000 in avian cells, due to post-translational modifications, presumably differences in complex oligosaccharides. Despite the high number of interspecies hybrid (Na+ + K+)-ATPase molecules, the cells had none of the high affinity ouabain binding sites (KD = 2 X 10(-7) M) characteristic of avian cells, consistent with the view that the ouabain binding site is located largely or exclusively on the alpha-subunit and is not greatly affected by alpha-beta interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号