首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
The formation of the sex vesicle, or XY body, during male meiosis and pairing of the sex chromosomes are thought to be essential for successful spermatogenesis. Despite its cytological discovery a century ago, the mechanism of XY body formation, particularly heterochromatinization of the sex chromosomes, has remained unclear. The HP1 class of chromobox genes are thought to encode proteins involved in the packaging of chromosomal DNA into repressive heterochromatin domains, as seen, for example, in position-effect variegation. Study of the distribution of a murine HP1-like chromodomain protein, M31, during spermatogenesis revealed spreading from the tip of the XY body in mid-stage pachytene spermatocytes to include the whole of the XY body in late-pachytene spermatocytes. We also demonstrate that the formation of the XY body during spermatogenic progression in neonatal mice coincides with the expression of a novel nuclear isoform of M31, M31(p21). These results support the view that a common mechanistic basis exists for heterochromatin-induced repression, homeotic gene silencing, and sex-chromosome inactivation during mammalian spermatogenesis.  相似文献   

3.
Centrosomes and microtubules play crucial roles during cell division and differentiation. Spermatogenesis is a useful system for studying centrosomal function since it involves both mitosis and meiosis, and also transformation of the centriole into the sperm basal body. Centrosomin is a protein localized to the mitotic centrosomes in Drosophila melanogaster. We have found a novel isoform of centrosomin expressed during spermatogenesis. Additionally, an anticentrosomin antibody labels both the mitotic and meiotic centrosomes as well as the basal body. Mutational analysis shows that centrosomin is required for spindle organization during meiosis and for organization of the sperm axoneme. These results suggest that centrosomin is a necessary component of the meiotic centrosomes and the spermatid basal body.  相似文献   

4.
5.
6.
Zinc finger proteins are polypeptides with sequence-specific, nucleic acid-binding properties. Substantial evidence has established them as a class of trans-acting molecules with regulatory roles in cellular growth and differentiation. We have screened an 11.5 day post coitum urogenital ridge cDNA library with an oligonucleotide encoding a sequence conserved between a variety of zinc finger proteins. By cDNA cloning and sequencing we show that a novel mouse gene, Zfp-35, encodes a protein with a block of 18 zinc finger domains and an N-terminal region rich in acidic residues. The 2.4 kb mRNA encoding this polypeptide is selectively expressed in adult testis, by comparison with other organs. We have analysed Zfp-35 expression in whole testes of sex-reversed mice, whole testes of prepuberal XY animals, germ cell fractions from XY adult testes and by in situ hybridization to sections from adult XY testes. Our studies show that a considerable increase in expression is restricted to spermatocytes at the pachytene stage of meiotic prophase. These experiments suggest that Zfp-35 may act to control gene activity during this particular stage of spermatogenesis.  相似文献   

7.
8.
During male meiosis in mammals the X and Y chromosomes become condensed to form the sex body (XY body), which is the morphological manifestation of the process of meiotic sex chromosome inactivation (MSCI). An increasing number of sex body located proteins are being identified, but their functions in relation to MSCI are unclear. Here we demonstrate that assaying male sex body located proteins during XY female mouse meiosis, where MSCI does not take place, is one way in which to begin to discriminate between potential functions. We show that a newly identified protein, "Asynaptin" (ASY), detected in male meiosis exclusively in association with the X and Y chromatin of the sex body, is also expressed in pachytene oocytes of XY females where it coats the chromatin of the asynapsed X in the absence of MSCI. Furthermore, in pachytene oocytes of females carrying a reciprocal autosomal translocation, ASY associates with asynapsed autosomal chromatin. Thus the location of ASY to the sex body during male meiosis is likely to be a response to the asynapsis of the non-homologous regions [outside the pseudoautosomal region (PAR)] of the heteromorphic X-Y bivalent, rather than being related to MSCI. In contrast to ASY, the previously described sex body protein XY77 proved to be male sex body specific. Potential functions for MSCI and the sex body are discussed together with the possible roles of these two proteins.  相似文献   

9.
Spermatogenesis is a complex process of terminal differentiation wherein mature sperm are produced. In the first wave of mouse spermatogenesis, different spermatogenic cells appear at specific time points, and their appearance is expected to be accompanied by changes in specific protein expression patterns. In this study, we used 2D-PAGE and MALDI-TOF/TOF technology to construct a comparative proteome profile for mouse testis at specific time points (days 0, 7, 14, 21, 28, and 60 postpartum). We identified 362 differential protein spots corresponding to 257 different proteins. Further cluster analysis revealed 6 expression patterns, and bioinformatics analysis revealed that each pattern was related to many specific cell processes. Among them, 28 novel proteins with unknown functions neither in somatic cells nor germ cells were identified, 8 of which were found to be uniquely or highly expressed in mouse testes via comparison with the GNF SymAtlas database. Further, we randomly selected 7 protein spots and the above 8 novel proteins to verify the expression pattern via Western blotting and RT-PCR, and 6 proteins with little information in testis were further investigated to explore their cellular localization during spermatogenesis by performing immunohistochemistry for the mouse testis tissue. Taken together, the above results reveal an important proteome profile that is functional during the first wave of mouse spermatogenesis, and they provide a strong basis for further research.  相似文献   

10.
11.
12.
13.
14.
Martin RH  Shi Q  Field LL 《Human genetics》2001,109(2):143-145
Males with a 47,XYY karyotype generally have chromosomally normal children, despite the high theoretical risk of aneuploidy. Studies of sperm karyotypes or FISH analysis of sperm have demonstrated that the majority of sperm are chromosomally normal in 47,XYY men. There have been a number of meiotic studies of XYY males attempting to determine whether the additional Y chromosome is eliminated during spermatogenesis, with conflicting results regarding the pairing of the sex chromosomes and the presence of an additional Y. We analyzed recombination in the pseudoautosomal region of the XY bivalent to determine whether this is perturbed in a 47,XYY male. A recombination frequency similar to normal 46,XY men would indicate normal pairing within the XY bivalent, whereas a significantly altered frequency would suggest other types of pairing such as a YY bivalent or an XYY trivalent. Two DNA markers, STS/STS pseudogene and DXYS15, were typed in sperm from a heterozygous 47,XYY male. Individual sperm (23,X or Y) were isolated into PCR tubes using a FACStarPlus flow cytometer. Hemi-nested PCR analysis of the two DNA markers was performed to determine the frequency of recombination. A total of 108 sperm was typed with a 38% recombination frequency between the two DNA markers. This is very similar to the frequency of 38.3% that we have observed in 329 sperm from a normal 46,XY male. Thus our results suggest that XY pairing and recombination occur normally in this 47,XYY male. This could occur by the production of an XY bivalent and Y univalent (which is then lost in most cells) or by loss of the additional Y chromosome in some primitive germ cells or spermatogonia and a proliferative advantage of the normal XY cells.  相似文献   

15.
16.
RNF151, a testis-specific RING finger protein, interacts with dysbindin   总被引:1,自引:0,他引:1  
RING finger proteins play important roles in spermatogenesis. Here, we report that a novel RING finger protein RNF151, with a C3HC4-type RING finger domain, a putative nuclear localization signal (NLS), and a TRAF-type zinc finger domain, was exclusively expressed in the mouse testis and developmentally regulated during spermatogenesis. While RNF151 mRNA was present in round spermatids, its protein was expressed in elongating spermatids of the stage VIII-IX seminiferous tubules. The NLS together with the RING domain were necessary and sufficient for the nuclear localization of RNF151-EGFP in transfected cells. Yeast two-hybrid screening identified the physical interaction of mouse RNF151 and dysbindin, which was confirmed by the co-immunoprecipitation of the proteins and by their co-localization in intact cells. As dysbindin has lately been shown to be involved in membrane biogenesis and fusion, a key process for acrosome formation, we propose that RNF151 may play a role in acrosome formation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号