首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The KcsA channel is a representative potassium channel that is activated by changes in pH. Previous studies suggested that the region that senses pH is entirely within its transmembrane segments. However, we recently revealed that the cytoplasmic domain also has an important role, because its conformation was observed to change dramatically in response to pH changes. Here, to investigate the effects of the cytoplasmic domain on pH-dependent gating, we made a chimera mutant channel consisting of the cytoplasmic domain of the KcsA channel and the transmembrane region of the MthK channel. The chimera showed a pH dependency similar to that of KcsA, indicating that the cytoplasmic domain can act as a pH sensor. To identify how this region detects pH, we substituted certain cytoplasmic domain amino acids that are normally negatively charged at pH 7 for neutral ones in the KcsA channels. These mutants opened independently of pH, suggesting that electrostatic charges have a major role in the cytoplasmic domain's ability to sense and respond to pH.  相似文献   

2.
KcsA, a potassium channel from Streptomyces lividans, is a good model for probing the general working mechanism of potassium channels. To date, the physiological activator of KcsA is still unknown, but in vitro studies showed that it could be opened by lowering the pH of the cytoplasmic compartment to 4. The C-terminal domain (CTD, residues 112-160) was proposed to be the modulator for this pH-responsive event. Here, we support this proposal by examining the pH profiles of: (a) thermal stability of KcsA with and without its CTD and (b) aggregation properties of a recombinant fragment of CTD. We found that the presence of the CTD weakened and enhanced the stability of KcsA at acidic and basic pH values, respectively. In addition, the CTD fragment oligomerized at basic pH values with a transition profile close to that of channel opening. Our results are consistent with the CTD being a pH modulator. We propose herein a mechanism on how this domain may contribute to the pH-dependent opening of KcsA.  相似文献   

3.
The intracellular C-terminal domain (CTD) of KcsA, a bacterial homotetrameric potassium channel, is a 40-residue-long segment that natively adopts a helical bundle conformation with 4-fold symmetry. A hallmark of KcsA behavior is pH-induced conformational change, which leads to the opening of the channel at acidic pH. Previous studies have reached conflicting conclusions as to the role of the CTD in this transition. Here, we investigate the involvement of this domain in pH-mediated channel opening by NMR using a soluble peptide corresponding to residues 128-160 of the CTD (CTD34). At neutral pH, CTD34 exhibits concentration-dependent spectral changes consistent with oligomer formation. We prove this slowly tumbling species to be a tetramer with a dissociation constant of (2.0±0.5)×10(-)(11)?M(3) by NMR and sedimentation equilibrium experiments. Whereas monomeric CTD34 is only mildly helical, secondary chemical shifts prove that the tetrameric species adopts a tight native-like helical bundle conformation. The tetrameric species undergoes pH-dependent dissociation, and CTD34 is fully monomeric below pH?5.0. The structural basis for this phenomenon is the destabilization of the tetrameric CTD34 by protonation of residue H145 in the monomeric form of the peptide. We conclude that (i) the CTD34 peptide is independently capable of forming a tetrameric helical bundle, and (ii) this structurally significant conformational shift is modulated by the effects of solution pH on residue H145. Therefore, the involvement of this domain in the pH gating of the channel is strongly suggested.  相似文献   

4.
Activation gating in KcsA is elicited by changes in intracellular proton concentration. Thompson et al. [1] identified a charge cluster around the inner gate that plays a key role in defining proton activation in KcsA. Here, through functional and spectroscopic approaches, we confirmed the role of this charge cluster and now provide a mechanism of pH-dependent gating. Channel opening is driven by a set of electrostatic interactions that include R117, E120 and E118 at the bottom of TM2 and H25 at the end of TM1. We propose that electrostatic compensation in this charge cluster stabilizes the closed conformation at neutral pH and that its disruption at low pH facilitates the transition to the open conformation by means of helix-helix repulsion.  相似文献   

5.
KcsA is the first potassium channel for which the molecular structure was revealed. However, the high resolution structural information is limited to the transmembrane domain, and the dynamic picture of the full KcsA channel remains unsolved. We have developed a new approach to investigate the surface structure of proteins, and we applied this method to investigate the full length of the KcsA channel. Single-cysteine substitution was introduced into 25 sites, and specific reaction of these mutated channels to a bare surface of a flat gold plate was evaluated by surface plasmon resonance measurements. The surface plasmon resonance signals revealed the highest exposure for the mutant of the C-terminal end. When the gate of the KcsA channel is kept closed at pH 7.5, the extent of exposure showed periodic patterns for the consecutive sites located in the cytoplasmic (CP) and N-terminal domain. This suggests that these stretches take the alpha-helical structure. When the channel was actively gated at pH 4.0, many sites in the CP domain became exposed. Compared with the rigid structure in pH 7.5, these results indicate that the CP domain became loosely packed upon active gating. The C-terminal end of the M2 helix is a moving part of the gate, and it is exposed to the outer surface slightly at pH 4.0. By adding a channel blocker, tetrabutylammonium, the gate is further exposed. This suggests that in the active gating tetrabutylammonium keeps the gate open rather than being trapped in the central cavity.  相似文献   

6.
Different patterns of channel activity have been detected by patch clamping excised membrane patches from reconstituted giant liposomes containing purified KcsA, a potassium channel from prokaryotes. The more frequent pattern has a characteristic low channel opening probability and exhibits many other features reported for KcsA reconstituted into planar lipid bilayers, including a moderate voltage dependence, blockade by Na(+), and a strict dependence on acidic pH for channel opening. The predominant gating event in this low channel opening probability pattern corresponds to the positive coupling of two KcsA channels. However, other activity patterns have been detected as well, which are characterized by a high channel opening probability (HOP patterns), positive coupling of mostly five concerted channels, and profound changes in other KcsA features, including a different voltage dependence, channel opening at neutral pH, and lack of Na(+) blockade. The above functional diversity occurs correlatively to the heterogeneous supramolecular assembly of KcsA into clusters. Clustering of KcsA depends on protein concentration and occurs both in detergent solution and more markedly in reconstituted membranes, including giant liposomes, where some of the clusters are large enough (up to micrometer size) to be observed by confocal microscopy. As in the allosteric conformational spread responses observed in receptor clustering (Bray, D. and Duke, T. (2004) Annu. Rev. Biophys. Biomol. Struct. 33, 53-73) our tenet is that physical clustering of KcsA channels is behind the observed multiple coupled gating and diverse functional responses.  相似文献   

7.
C-type inactivation is a time-dependent process of great physiological significance that is observed in a large class of K+ channels. Experimental and computational studies of the pH-activated KcsA channel show that the functional C-type inactivated state, for this channel, is associated with a structural constriction of the selectivity filter at the level of the central glycine residue in the signature sequence, TTV(G)YGD. The structural constriction is allosterically promoted by the wide opening of the intracellular activation gate. However, whether this is a universal mechanism for C-type inactivation has not been established with certainty because similar constricted structures have not been observed for other K+ channels. Seeking to ascertain the general plausibility of the constricted filter conformation, molecular dynamics simulations of a homology model of the pore domain of the voltage-gated potassium channel Shaker were performed. Simulations performed with an open intracellular gate spontaneously resulted in a stable constricted-like filter conformation, providing a plausible nonconductive state responsible for C-type inactivation in the Shaker channel. While there are broad similarities with the constricted structure of KcsA, the hypothetical constricted-like conformation of Shaker also displays some subtle differences. Interestingly, those are recapitulated by the Shaker-like E71V KcsA mutant, suggesting that the residue at this position along the pore helix plays a pivotal role in determining the C-type inactivation behavior. Free energy landscape calculations show that the conductive-to-constricted transition in Shaker is allosterically controlled by the degree of opening of the intracellular activation gate, as observed with the KcsA channel. The behavior of the classic inactivating W434F Shaker mutant is also characterized from a 10-μs MD simulation, revealing that the selectivity filter spontaneously adopts a nonconductive conformation that is constricted at the level of the second glycine in the signature sequence, TTVGY(G)D.  相似文献   

8.
Voltage-gated ion channels are modular proteins designed by the structural linkage of a voltage sensor and a pore domain. The functional coupling of these two protein modules is a subject of intense research. A major focus has been directed to decipher the role of the S4-S5 linker and the C-end of the inner pore helix in channel gating. However, the contribution of the cytosolic N terminus of S5 remains elusive. To address this issue, we used a chimeric subunit that linked the voltage sensor of the Shaker channel to the prokaryotic KcsA pore domain (denoted as Shaker-KcsA). This chimera preserved the Shaker sequences at both the N terminus of S5 and the C-end of S6. Chimeric Shaker-KcsA subunits did not form functional homomeric channels but were synthesized, folded, and trafficked to the cell surface, as evidenced by their co-assembly with Shaker wild type subunits. Sequential substitution of Shaker amino acids at the C-end of S6 and the N terminus of S5 by the corresponding KcsA created voltage-sensitive channels with voltage-dependent properties that asymptotically approached those of the wild type Shaker channel. Noteworthy, substitution of the region encompassing Phe(401)-Phe(404) at the N-end of Shaker S5 by KcsA residues resulted in a significant gain in voltage sensitivity of the chimeras. Furthermore, analysis of channel function at high [K(+)](o) revealed that the Phe(401)-Phe(404) region is an important molecular determinant for competent coupling of voltage sensing and pore opening. Taken together, these findings indicate that complete replacement of Shaker S5 and S6 by KcsA M1 and M2 is required for voltage-dependent gating of the prokaryotic channel. In addition, our results imply that the region encompassing Phe(401)-Phe(404) in Shaker is involved in protein-protein interactions with the voltage sensor, and signal to the Phe(401) in the S5 segment as a key molecular determinant to pair the voltage sensor and the pore domain.  相似文献   

9.
KcsA is a proton-activated K+ channel that is regulated at two gates: an activation gate located in the inner entrance of the pore and an inactivation gate at the selectivity filter. Previously, we revealed that the cytoplasmic domain (CPD) of KcsA senses proton and that electrostatic changes of the CPD influences the opening and closing of the activation gate. However, our previous studies did not reveal the effect of CPD on the inactivation gate because we used a non-inactivating mutant (E71A). In the present study, we used mutants that did not harbor the E71A mutation, and showed that the electrostatic state of the CPD influences the inactivation gate. Three novel CPD mutants were generated in which some negatively charged amino acids were replaced with neutral amino acids. These CPD mutants conducted K+, but showed various inactivation properties. Mutants carrying the D149N mutation showed high open probability and slow inactivation, whereas those without the D149N mutation showed low open probability and fast inactivation, similar to wild-type KcsA. In addition, mutants with D149N showed poor K+ selectivity, and permitted Na+ to flow. These results indicated that electrostatic changes in the CPD by D149N mutation triggered the loss of fast inactivation and changes in the conformation of selectivity filter. Additionally, the loss of fast inactivation induced by D149N was reversed by R153A mutation, suggesting that not only the electrostatic state of D149, but also that of R153 affects inactivation.  相似文献   

10.
We examine the hypotheses that the Streptomyces lividans potassium channel KcsA is gated at neutral pH by the electrochemical potential, and that its selectivity and conductance are governed at the cytoplasmic face by interactions between the KcsA polypeptides and a core molecule of inorganic polyphosphate (polyP). The four polypeptides of KcsA are postulated to surround the end unit of the polyP molecule with a collar of eight arginines, thereby modulating the negative charge of the polyP end unit and increasing its preference for binding monovalent cations. Here we show that KcsA channels can be activated in planar lipid bilayers at pH 7.4 by the chemical potential alone. Moreover, one or both of the C-terminal arginines are replaced with residues of progressively lower basicity-lysine, histidine, valine, asparagine-and the effects of these mutations on conductance and selectivity for K+ over Mg2+ is tested in planar bilayers as a function of Mg2+ concentration and pH. As the basicity of the C-terminal residues decreases, Mg2+ block increases, and Mg2+ becomes permeant when medium pH is greater than the pI of the C-terminal residues. The results uphold the premise that polyP and the C-terminal arginines are decisive elements in KcsA channel regulation.  相似文献   

11.
KcsA is a prokaryotic potassium channel formed by the assembly of four identical subunits around a central aqueous pore. Although the high-resolution X-ray structure of the transmembrane portion of KcsA is known [Doyle, D. A., Morais, C. J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) Science 280, 69-77], the identification of the molecular determinant(s) involved in promoting subunit tetramerization remains to be determined. Here, C-terminal deletion channel mutants, KcsA Delta125-160 and Delta120-160, as well as 1-125 KcsA obtained from chymotrypsin cleavage of full-length 1-160 KcsA, have been used to evaluate the role of the C-terminal segment on the stability and tetrameric assembly of the channel protein. We found that the lack of the cytoplasmic C-terminal domain of KcsA, and most critically the 120-124 sequence stretch, impairs tetrameric assembly of channel subunits in a heterologous E. coli expression system. Molecular modeling of KcsA predicts that, indeed, such sequence stretch provides intersubunit interaction sites by hydrogen bonding to amino acid residues in N- and C-terminal segments of adjacent subunits. However, once the KcsA tetramer is assembled, its remarkable in vitro stability to detergent or to heat-induced dissociation into subunits is not greatly influenced by whether the entire C-terminal domain continues being part of the protein. Finally and most interestingly, it is observed that, even in the absence of the C-terminal domain involved in tetramerization, reconstitution into membrane lipids promotes in vitro KcsA tetramerization very efficiently, an event which is likely mediated by allowing proper hydrophobic interactions involving intramembrane protein domains.  相似文献   

12.
The molecular nature of the structure responsible for proton sensitivity in KcsA has been identified as a charge cluster that surrounds the inner helical bundle gate. Here, we show that this proton sensor can be modified to engineer a constitutively open form of KcsA, amenable to functional, spectroscopic and structural analyses. By combining charge neutralizations for all acidic and basic residues in the cluster at positions 25, 117-122 and 124 (but not E118), a mutant KcsA is generated that displays constitutively open channel activity up to pH 9. The structure of this mutant revealed that full opening appears to be inhibited by lattice forces since the activation gate seems to be only on the early stages of opening.  相似文献   

13.
Shimizu H  Iwamoto M  Konno T  Nihei A  Sasaki YC  Oiki S 《Cell》2008,132(1):67-78
Ion channels are signal transduction molecules that switch ion permeation pathways on and off (gating). Crystal structures of several kinds of potassium channels have revealed open and closed conformations, which provide static pictures of gating status. Here we studied KcsA potassium channels undergoing conformational changes at the single-molecule level. A KcsA channel with a gold nanocrystal attached was irradiated by white X-rays and motions of the diffraction spot from the nanocrystal were tracked in real time. Upon gating, the KcsA channels twisted around the axis of the pore. These conformational changes were prevented by an open-channel blocker, tetrabuthylammonium. Random clockwise and counterclockwise twisting in the range of several tens of degrees originated in the transmembrane domain and was transmitted to the cytoplasmic domain. This coupling suggests a mechanical interplay between the transmembrane and cytoplasmic domains.  相似文献   

14.
The bacterial K+ channel KcsA from Streptomyces lividans was analyzed by neutron and x-ray small-angle solution scattering. The C-terminally truncated version of KcsA, amenable to crystallographic studies, was compared with the full-length channel. Analyzing the scattering data in terms of radius of gyration reveals differences between both KcsA species of up to 13.2 A. Equally, the real-space distance distribution identifies a 40 to 50 A extension of full-length KcsA compared to its C-terminally truncated counterpart. We show that the x-ray and neutron scattering data are amenable for molecular shape reconstruction of full-length KcsA. The molecular envelopes calculated display an hourglass-shaped structure within the C-terminal intracellular domain. The C-terminus extends the membrane spanning region of KcsA by 54-70 A, with a central constriction 10-30 A wide. Solution scattering techniques were further employed to characterize the KcsA channel under acidic conditions favoring its open conformation. The full-length KcsA at pH 5.0 shows the characteristics of a dumbbell-shaped macromolecular structure, originating from dimerization of the tetrameric K+ channel. Since C-terminally truncated KcsA measured under the same low pH conditions remains tetrameric, oligomerization of full-length KcsA seems to proceed via structurally changed C-terminal domains. The determined maximum dimensions of the newly formed complex increase by 50-60%. Shape reconstruction of the pseudooctameric complex indicates the pH-induced conformational reorganization of the intracellular C-terminal domain.  相似文献   

15.
Nuclear magnetic resonance (NMR) studies of large membrane-associated proteins are limited by the difficulties in preparation of stable protein-detergent mixed micelles and by line broadening, which is typical of these macroassemblies. We have used the 68-kDa homotetrameric KcsA, a thermostable N-terminal deletion mutant of a bacterial potassium channel from Streptomyces lividans, as a model system for applying NMR methods to membrane proteins. Optimization of measurement conditions enabled us to perform the backbone assignment of KcsA in SDS micelles and establish its secondary structure, which was found to closely agree with the KcsA crystal structure. The C-terminal cytoplasmic domain, absent in the original structure, contains a 14-residue helix that could participate in tetramerization by forming an intersubunit four-helix bundle. A quantitative estimate of cross- relaxation between detergent and KcsA backbone amide protons, together with relaxation and light scattering data, suggests SDS-KcsA mixed micelles form an oblate spheroid with approximately 180 SDS molecules per channel. K(+) ions bind to the micelle-solubilized channel with a K(D) of 3 +/- 0.5 mM, resulting in chemical shift changes in the selectivity filter. Related pH-induced changes in chemical shift along the "outer" transmembrane helix and the cytoplasmic membrane interface hint at a possible structural explanation for the observed pH-gating of the potassium channel.  相似文献   

16.
The role of the cytoplasmic domain of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins in virus replication was investigated. Deletion of residues 840 to 856 at the carboxyl terminus of gp41 reduced the efficiency of virus entry during an early step in the virus life cycle between CD4 binding and formation of the DNA provirus without affecting envelope glycoprotein synthesis, processing, or syncytium-forming ability. Deletion of residues amino terminal to residue 846 was associated with decreased stability of envelope glycoproteins made in COS-1 cells, but this phenotype was cell type dependent. The cytoplasmic domain of gp41 was not required for the incorporation of the HIV-1 envelope glycoproteins into virions. These results suggest that the carboxyl terminus of the gp41 cytoplasmic domain plays a role in HIV-1 entry other than receptor binding or membrane fusion. The cytoplasmic domain of gp41 also affects the stability of the envelope glycoprotein in some cell types.  相似文献   

17.
GluR0 is a prokaryotic homologue of mammalian glutamate receptors that forms glutamate-activated, potassium-selective ion channels. The topology of its transmembrane (TM) domain is similar to that of simple potassium channels such as KcsA. Two plausible alignments of the sequence of the TM domain of GluR0 with KcsA are possible, differing in the region of the P helix. We have constructed homology models based on both alignments and evaluated them using 6 ns duration molecular dynamics simulations in a membrane-mimetic environment. One model, in which an insertion in GluR0 relative to KcsA is located in the loop between the M1 and P helices, is preferred on the basis of lower structural drift and maintenance of the P helix conformation during simulation. This model also exhibits inter-subunit salt bridges that help to stabilise the TM domain tetramer. During the simulation, concerted K(+) ion-water movement along the selectivity filter is observed, as is the case in simulations of KcsA. K(+) ion exit from the central cavity is associated with opening of the hydrophobic gate formed by the C-termini of the M2 helices. In the intact receptor the opening of this gate will be controlled by interactions with the extramembranous ligand-binding domains.  相似文献   

18.
BACKGROUND: The voltage-gated potassium channel Shaker from Drosophila consists of a tetramer of identical subunits, each containing six transmembrane segments. The atomic structure of a bacterial homolog, the potassium channel KcsA, is much smaller than Shaker. It does not have a voltage sensor and other important domains like the N-terminal tetramerization (T1) domain. The structure of these additional elements has to be studied in the more complex voltage-gated channels. RESULTS: We determined the three-dimensional structure of the entire Shaker channel at 2.5 nm resolution using electron microscopy. The four-fold symmetric structure shows a large and a small domain linked by thin 2 nm long connectors. To interpret the structure, we used the crystal structures of the isolated T1 domain and the KcsA channel. A unique density assignment was made based on the symmetry and dimensions of the crystal structures and domains, identifying the smaller domain as the cytoplasmic mass of Shaker containing T1 and the larger domain as embedded in the membrane. CONCLUSIONS: The two-domain architecture of the Shaker channel is consistent with the recently proposed "hanging gondola" model for the T1 domain, putting the T1 domain at a distance from the membrane domain but attached to it by thin connectors. The space between the two domains is sufficient to permit cytoplasmic access of ions and the N-terminal inactivation domain to the pore region. A hanging gondola architecture has also been observed in the nicotinic acetylcholine receptor and the KcsA structure, suggesting that it is a common element of ion channels.  相似文献   

19.
Domain 4 of the anthrax protective antigen (PA) plays a key role in cellular receptor recognition as well as in pH-dependent pore formation. We present here the 1.95 Å crystal structure of domain 4, which adopts a fold that is identical to that observed in the full-length protein. We have also investigated the structural properties of the isolated domain 4 as a function of pH, as well as the pH-dependence on binding to the von Willebrand factor A domain of capillary morphogenesis protein 2 (CMG2). Our results provide evidence that the isolated domain 4 maintains structure and interactions with CMG2 at pH 5, a pH that is known to cause release of the receptor on conversion of the heptameric prepore (PA63)7 to a membrane-spanning pore. Our results suggest that receptor release is not driven solely by a pH-induced unfolding of domain 4.  相似文献   

20.
alpha(9)beta(1) integrin is a member of the beta(1) integrin family, plays an important role in extravasation of neutrophils at sites of acute inflammation, and is required for the normal development of the lymphatic system. The alpha(9) and alpha(4) integrin subunits are most closely related and form a subfamily of integrin alpha subunits. Previously, we have reported that the alpha(4) cytoplasmic domain directly and tightly binds paxillin, an intracellular signaling adaptor molecule. This interaction accounts for some of the unusual functional responses to alpha(4) integrin-mediated cell adhesion, including stimulation of cell migration and inhibition of cell spreading and focal adhesion formation. In the current studies, we have examined the interaction between the alpha(9) cytoplasmic domain and paxillin. Here we report that the alpha(9) cytoplasmic domain binds paxillin directly and tightly and that the alpha(9)-paxillin association inhibits cell spreading. We have identified amino acid residues in the alpha(9) cytoplasmic domain, Trp(999) and Trp(1001), that are critical for paxillin binding, and alanine substitution of either Trp(999) or Trp(1001) blocks paxillin binding. Furthermore, these mutations also reverse the effect of the alpha(9) cytoplasmic domain on cell spreading. Thus, the alpha(9) and alpha(4) integrin subunits form a paxillin-binding subfamily of integrin alpha subunits, and direct binding of paxillin to the alpha(9) cytoplasmic domain mediates some of the biological activities of the alpha(9)beta(1) integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号