首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The cobalt(II) tetracarboxyphthalocyanine-deoxyribonucleotide pd(TCTTCCCA) conjugate was synthesized. The phthalocyanineN-succinimide ester prepared from phthalocyanine using DCC was mixed in DMF with an aqueous solution of the oligonucleotide bearing a 1,3-diaminopropane linker at the 5′-phosphate. The resulting conjugate was tested in the intraduplex reaction with target 14-mer and 22-mer oligonucleotides containing conjugate-complementary sequences. In the presence of O2 and a thiol (2-mercaptoethanol or DTT), as a coupled reducer, or H2O2, sequence-specific DNA modification was observed that caused the cleavage of the target upon treatment with piperidine. This article is dedicated to the 25th Anniversary of the journal Bioorganicheskaya Khimiya  相似文献   

2.
Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.  相似文献   

3.
Li XM  Gu SS  Zhang SS 《Oligonucleotides》2008,18(3):287-294
A simple and sensitive method for electrochemical detection of DNA was designed. This DNA sensor was based on a "sandwich" detection strategy, which involved a long capture probe DNA immobilized on glassy carbon electrodes that flanked both the reference DNA and target DNA. Electrochemical signals were measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using aquadichloro(benzimidazole)-copper(II), Cu(bzim)(H(2)O)Cl(2), as an electroactive indicator. An improving amount of Cu(bzim)(H(2)O)Cl(2) was interacted with the hybrid DNA via the incorporation of a long-probe DNA and a reference DNA in this sensor. As a result of this effect, this sensor design significantly enhanced the sensitivity. With 48-mer probe DNA and 27-mer reference DNA, the proposed method could be used for detection of 21-mer ssDNA ranging from 1.32 x 10(-7) to 2.52 x 10(-6) M with a detection limit of 2.94 x 10(-8) M. Electrochemical DNA biosensors were also developed using the same long-probe sequence as the target sequence with the novel hybridization indicator, Cu(bzim) (H(2)O)Cl(2). The detection limits for the complementary 21-mer target and 27-mer target were 9.52 x 10(-8) M and 5.81 x 10(-8) M, respectively. The results showed that the sensor with long-probe DNA and reference DNA is far more sensitive than that with nonswitch assay.  相似文献   

4.
We have investigated the binding of a 26-mer antisense oligodeoxynucleotide to a 69-mer DNA hairpin with a 13 base pair stem, bearing an Rsa1 restriction site. The 5' part of the 26-mer annealed to a stretch of six purines at the bottom of the hairpin. The 3' part was designed to fold back to form a triplex with both the stem of the hairpin and with the sequence paired to its own 5' region. Using non-denaturing polyacrylamide gel electrophoresis, melting curves (Tm) and chemical footprinting, we were able to show the formation of a 'double-hairpin' complex between the 69-mer and the 26-mer antisense oligopyrimidines. The association was both sequence and pH-dependent. The formation of a double hairpin complex was shown to prevent the alkylation of the 69-mer DNA target by an oligonucleotide-nitrogen mustard conjugate and to selectively inhibit the action of Rsa1.  相似文献   

5.
Bleomycin displays clinical chemotherapeutic activity, but is so nonspecifically toxic that it is rarely administered. It was therefore of interest to determine whether bleomycin could be directed to cleave RNA or DNA at a specific site by conjugation to a complementary oligonucleotide. A 15 nt MYC complementary oligodeoxynucleotide (HMYC55) bearing a 5' bleomycin A5 (Blm) residue was designed to base-pair with nt 7047-7061 of human MYC mRNA. Reactivity of the Blm-HMYC55 conjugate (and mismatch controls) with a MYC mRNA 30-mer, a MYC DNA 30-mer, and a MYC 2'-O-methyl RNA 30-mer, nt 7041-7070, was analyzed in 100 microM FeNH(4)SO(4), 50 mM beta-mercaptoethanol, 200 mM LiCl, 10 mM Tris-HCl, pH 7.5, at 37 degrees C. Cleavage of the substrate RNA or DNA occurred primarily at the junction of the complementary DNA-target RNA duplex, 18-22 nt from the 5' end of the RNA. Reaction products with lower mobility than the target RNA or DNA also formed. Little or no reaction was observed with more than three mismatches in a Blm-oligodeoxynucleotide conjugate. Neither the short RNA or DNA cleavage fragments nor the low mobility products were observed in the absence of Fe(II), or the presence of excess EDTA. The target RNA was also cleaved efficiently by bleomycin within a hybrid duplex with a preformed single-nucleotide bulge in the RNA strand. New Blm-oligodeoxynucleotide conjugates containing long hexaethylene glycol phosphate based linkers between oligodeoxynucleotide and bleomycin were designed to target this bulge region. These conjugates achieved 8-18% cleavage of the target RNA, depending on the length of the linker. Blm-oligodeoxynucleotide conjugates thus demonstrated sequence specificity and site specificity against RNA and DNA targets.  相似文献   

6.
Abstract

The conjugate of antitumor antibiotic bleomycin A5 with the tetranucleotide catalytically cleaves 20-mer ssDNA target in the presence of flanking octanucleotides. Each molecule of the conjugate cleaves on the average three molecules of the target.  相似文献   

7.
Recently we have developed an approach to superspecific photomodification of nucleic acids by binary systems of oligonucleotides conjugated to precursor groups capable of assembling into photoactivatable structure upon simultaneous binding of the conjugates to the target. We have investigated the solution structure of a model binary system 1:2:3, where 1 is the target 12-mer 5'-pdGTATCAGTTTCT, 2 is the photoreactive conjugate 5'-dAGAAACp-NH(CH2)2NH-Az and 3 is the sensitizing conjugate 5'-Pyr-pdTGATAC (Az is p-azidotetrafluorobenzoyl group and Pyr is the pyrenyl-1-methylamino group). The photoreaction within this complex results in crosslinking of reagent 2 with N7-position of the G7 residue of the target thus indicating that the photoreactive Az residue is located in the major groove near the G7 residue. The center-to-center distances between the Pyr and Az moieties in complex 1:2:3 independently determined by the Pyr-group fluorescence quenching and the Az-group sensitized photodecomposition were 11.2 and 12.6 A, respectively.  相似文献   

8.
We report on proton and phosphorus high resolution NMR investigations of the self-complementary dodecanucleotide d(C1-G2-N3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) duplexes (henceforth called O6 meG.N 12-mers), N = C, T, A and G, which contain N3.O6meG10 interactions in the interior of the helix. These sequences containing a single modified O6meG per strand were prepared by phosphoamidite synthesis and provide an excellent model for probing the structural basis for covalent carcinogenic lesions in DNA. Distance dependent nuclear Overhauser effect (NOE) measurements and line widths of imino protons demonstrate that the N3 and O6meG.10 bases stack into the duplex and are flanked by stable Watson-Crick base pairs at low temperature for all four O6meG.N 12-mer duplexes. The imino proton of T3 in the O6meG.T 12-mer and G3 in the O6meG.N 12-mer helix, which are associated with the modification site, resonate at unusually high field (8.5 to 9.0 ppm) compared to imino protons in Watson-Crick base pairs (12.5 to 14.5 ppm). The nonexchangeable base and sugar protons have been assigned from two dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) measurements on the O6meG.N 12-mer helices. The directionality of the distance dependent NOEs establish all O6meG.N duplexes to be right-handed helices in solution. The glycosidic torsion angles are in the anti range at the N3.O6meG10 modification site except for O6meG10 in the O6meG.G 12-mer duplex which adopts a syn configuration. This results in altered NOEs between the G3 (anti).O6meG10 (syn) pair and flanking G2.C11 and G4.C9 base pairs in the O6meG.G 12-mer duplex. We observe pattern reversal for cross peaks in the COSY spectrum linking the sugar H1' protons with the H2',2" protons at the G2 and O6meG10 residues in the O6meG.N 12-mer duplexes with the effect least pronounced for the O6meG.T 12-mer helix. The proton chemical shift and NOE data have been analyzed to identify regions of conformational perturbations associated with N3.O6meG10 modification sites in the O6meG.N 12-mer duplexes. The proton decoupled phosphorus spectrum of O6meG.T 12-mer duplex exhibits an unperturbed phosphodiester backbone in contrast to the phosphorus spectra of the O6meG.C 12-mer, O6meG.G 12-mer and O6meG.A 12-mer duplexes which exhibit phosphorus resonances dispersed over 2 ppm characteristic of altered phosphodiester backbones at the modification site. Tentative proposals are put forward for N3.O6meG10 pairing models based on the available NMR data and serve as a guide for the design of future experiments.  相似文献   

9.
A DNA piezoelectric biosensing method for real-time detection of Escherichia coli O157:H7 in a circulating-flow system was developed in this study. Specific probes [a 30-mer oligonucleotide with or without additional 12 deoxythymidine 5′-monophosphate (12-dT)] for the detection of E. coli O157:H7 gene eaeA, synthetic oligonucleotide targets (30 and 104 mer) and PCR-amplified DNA fragments from the E. coli O157:H7 eaeA gene (104 bp), were used to evaluate the efficiency of the probe immobilization and hybridization with target DNA in the circulating-flow quartz crystal microbalance (QCM) device. It was found that thiol modification on the 5′-end of the probes was essential for probe immobilization on the gold surface of the QCM device. The addition of 12-dT to the probes as a spacer, significantly enhanced (P < 0.05) the hybridization efficiency (H%). The results indicate that the spacer enhanced the H% by 1.4- and 2-fold when the probes were hybridized with 30- and 104-mer targets, respectively. The spacer reduced steric interference of the support on the hybridization behavior of immobilized oligonucleotides, especially when the probes hybridized with relatively long oligonucleotide targets. The QCM system was also applied in the detection of PCR-amplified DNA from real samples of E. coli O157:H7. The resultant H% of the PCR-amplified double-strand DNA was comparable to that of the synthetic target T-104AS, a single-strand DNA. The piezoelectric biosensing system has potential for further applications. This approach lays the groundwork for incorporating the method into an integrated system for rapid PCR-based DNA analysis.  相似文献   

10.
Abstract

Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.  相似文献   

11.
A zinc(II) phthalocyanine compound, tetra-alpha-(2,2,4-tirmethyl-3-pentoxy) Phthalocyanine Zinc (ZnPc(OR)(4)) was synthesized in this paper and this zinc (II) phthalocyanine compound was used as the photosensitizer in the photoinduced chemiluminescence (PCL) of lucigenin in N,N-dimethylformamide (DMF). The photoexcited ZnPc(OR)(4) would produce singlet molecular oxygen ((1)O(2)), which would further react with DMF to form corresponding DMF radicals, such as CH(3) and CH(2)N(CH(3))CHO, or corresponding alkylperoxyl radicals. Then the carbon centred radical would react with lucigenin to initiate the chemiluminescence. These results would provide useful data to establish a method for evaluation of the ability of (1)O(2) generation of phthalocyanine. It was also found in this paper that the flavonoids could effectively inhibit this PCL system, which parallelled very well to flavonoids' radical-scavenging capacity. The mechanism of this PCL system and the relationship between the molecular structure of flavonoids and their radical-scavenging activity are also discussed in detail in this paper.  相似文献   

12.
177Lu is presently being considered as one of the most promising radionuclide for targeted therapy owing to its suitable decay characteristics. 177Lu in high radionuclidic purity (99.99%) and moderate specific activity (100-110 TBq/g) was produced using enriched (60.6% 176Lu) Lu2O3 target. The macrocycle 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) is known to form stable complexes with lanthanides. Herein, we describe a novel attempt to introduce 177Lu in the estradiol moiety through a steroidal-BFCA (Bifunctional Chelating Agent) conjugate. The preparation of a steroid conjugate via coupling of 6alpha-amino-17beta-estradiol with a C-functionalized DOTA derivative viz. p-NCS-benzyl-DOTA as a BFCA and thereafter the radiolabelling of the conjugate with 177Lu is reported. Biological activity of the resultant estradiol-DOTA conjugate after radiolabelling was studied by carrying out preliminary in vitro cell uptake studies with MCF-7, human breast carcinoma cell line expressing estrogen receptors as well as binding studies with anti-estradiol antibodies.  相似文献   

13.
Herein we describe the design, efficient synthesis, and photophysical properties of two macrocycle dyes for cancer theranostics. This study compares a glycosylated chlorin with a glycosylated phthalocyanine designed to specifically target cancer, wherein the photophysical properties enable both fluorescence imaging and the sensitization of the formation of reactive oxygen species (ROS) for photodynamic therapy. Both the compounds show low darktoxicity (IC50 > 100 μM). The glycosylated phthalocyanine showed low phototoxicity (IC50 > 100 μM) while glycosylated chlorin showed high phototoxicity (IC50 = 1–2 μM). ZnPcGlc8 has low solubility and also form aggregates in aqueous media, thus resulting in minimal uptake in two different human breast cancer cell lines: MDA-MB-231 and MCF-7. The glycosylated chlorin however was efficiently taken up by these two cell lines, thus allows fluorescence imaging in cells and in xenograft tumor model in mice. In this study, we find that the chlorin conjugate is the more promising theranostic agent.  相似文献   

14.
The synthesis and characterization of the versatile dextran-based molecular amplifier 6 is described. Dextran (Mr = 40,200) was selectively monofunctionalized in high yield at its reducing terminus via reductive amination with 2-(4-nitrophenyl)ethylamine to give 1. The nitro group in 1 serves as a masked amino group which is eventually converted into a reactive isothiocyanato group used for monovalent attachment of the completed assembly to a target molecule. Cyanoethylation of 1 gave the terminally nitrophenylated poly(cyanoethyl)dextran 5 which was selectively reduced to the corresponding poly(aminopropyl) derivative 6 with BH3.THF, a reagent which preserved the end nitro group. Conjugation of amplifier 6 with the isothiocyanate-derivatized Gd(III) chelate 7 gave conjugate 9 containing about 22 mol of chelate/mol of amplifier. The T1 relaxivity per Gd(III) ion of 9 in H2O was 15.0 mM-1 s-1, about 3-fold higher than that of free Gd(III)DTPA in H2O. The nitro group of 9 was then selectively reduced to the corresponding amine 10, which was converted into isothiocyanate 11. The reactivity of the single isothiocyanate group in 11 was demonstrated by coupling to 5-aminoeosin, giving conjugate 12. Amplifier 6 was also conjugated with the acid-labile N-cis-aconityl derivative 8 of the potent anticancer agent daunomycin. The nitro group of the resulting conjugate 13 was then reduced and the resulting amine 14 was converted into mono isothiocyanate 15. Compound 15 reacted with a water-insoluble amine-containing solid support to give 16. Free daunomycin was released from 16 by exposure to citrate-phosphate buffer at pH 4.0.  相似文献   

15.
A circulating-flow piezoelectric biosensor, based on an Au nanoparticle amplification and verification method, was used for real-time detection of a foodborne pathogen, Escherichia coli O157:H7. A synthesized thiolated probe (Probe 1; 30-mer) specific to E. coli O157:H7 eaeA gene was immobilized onto the piezoelectric biosensor surface. Hybridization was induced by exposing the immobilized probe to the E. coli O157:H7 eaeA gene fragment (104-bp) amplified by PCR, resulting in a mass change and a consequent frequency shift of the piezoelectric biosensor. A second thiolated probe (Probe 2), complementary to the target sequence, was conjugated to the Au nanoparticles and used as a "mass enhancer" and "sequence verifier" to amplify the frequency change of the piezoelectric biosensor. The PCR products amplified from concentrations of 1.2 x 10(2) CFU/ml of E. coli O157:H7 were detectable by the piezoelectric biosensor. A linear correlation was found when the E. coli O157:H7 detected from 10(2) to 10(6) CFU/ml. The piezoelectric biosensor was able to detect targets from real food samples.  相似文献   

16.
Hemin (Fe(3+)) was adsorbed onto synthetic smectite (clay mineral) in acetone to form a hemin-smectite conjugate. The hemin-smectite conjugate became soluble in water to form a transparent colloidal solution with a dark brown color. Its absorption spectrum in water showed a sharp Soret band at 398 nm with the molar extinction coefficient as epsilon(398nm) = 11.6 x 10(4) M(-1) cm(-1), which is in good agreement with epsilon(398nm) = (12.2 +/- 3) x 10(4) M(-1) cm(-1) of monomeric hematin (1). Hemin (Fe(3+))-smectite conjugate had a peroxidase-like activity in the presence of hydrogen peroxide (a hydrogen acceptor) and guaiacol (a hydrogen donor) in aqueous solution and its activity was higher than that of hematin. Hemin (Fe(3+))-smectite conjugate in water was reduced by adding sodium dithionite to form a heme (Fe(2+))-smectite conjugate which is also a transparent colloidal solution in water. Its absorption spectrum in aqueous solution was surprisingly in close agreement with that of oxyhemoglobin. Its peak positions of alpha, beta, and Soret bands were located in only a 9--3 nm shift to shorter wavelengths in comparison with those of oxyhemoglobin. Therefore, heme (Fe(2+))-smectite conjugate was bound to O(2) to form O(2)-heme (Fe(2+))-smectite conjugate. The addition of carbon monoxide, CO, to O(2)-heme (Fe(2+))-smectite conjugate caused the formation of CO-heme (Fe(2+))-smectite conjugate with a similar absorption spectrum of carboxyhemoglobin (HbCO) accompanied by shifting 8--10 nm to shorter wavelength. Therefore, the transformation of O(2)-heme (Fe(2+))-smectite conjugate to CO-heme (Fe(2+))-smectite conjugate was accompanied by shifting of 7, 4, and 3 nm to shorter wavelengths in the alpha, beta, and Soret bands respectively, which are similar to the spectral change from oxyhemoglobin to carboxyhemoglobin. Also the ratio (1:1.6) of the molar extinction coefficient of Soret band of O(2)-heme (Fe(2+))-smectite conjugate and CO-heme (Fe(2+))-smectite conjugate was surprisingly agreement with ratio (1:1.5) of oxyhemoglobin and carboxyhemoglobin. The phenomenon shown above was unexpectedly found during the course of study of bioconjugate of a bioactive substance, hemin (Fe(3+)) or heme (Fe(2+)), and a clay mineral, smectite, in place of the protein of globin in hemoglobin.  相似文献   

17.
A M Doweyko  W B Mattes 《Biochemistry》1992,31(39):9388-9392
The sequence specificity of DNA alkylation by uracil mustard was examined using a novel three-dimensional QSAR method known as HASL, or the hypothetical active site lattice. The structures of a variety of 4-mer sequences obtained from pBR322 and SV40 were related to their degree of guanine-N7 alkylation by uracil mustard. The resulting correlations were found to point to a significant contribution from bases on the 3' side of the target guanine nucleotide. The HASL models derived from the analysis of 52 guanine-containing 4-mer sequences were used to highlight those atomic features in the favored TGCC sequence that were found most important in determining specificity. It was found that the NH2-O systems present in the two GC base pairs on the 3' side of the target guanine were significantly correlated to the degree of alkylation by uracil mustard. This finding is consistent with a prealkylation binding event occurring between these sites along the major groove and the uracil mustard O2/O4 system.  相似文献   

18.
Microglial activation has recently been recognized as a cause of damage in various neurodegenerative diseases. A possible mechanism underlying this damage is the activation of microglia by serum factors leaked through a disruption of the blood-brain barrier, which in turn trigger microglial cell proliferation and the release of various substances toxic to neurons, such as superoxide (O(2)(-)). We recently reported that serum albumin enhanced O(2)(-) production in cultured rat microglia stimulated by phorbol ester. In the present report, we identify the active site of this enhancement within the albumin molecule. We purified an active subfragment from trypsin-treated bovine serum albumin that was composed of 12-mer and 33-mer peptides connected by a disulfide bond. The chemically synthesized 12-mer peptide showed activity within a concentration range ( approximately 10(-7) M:) equivalent to that of albumin. The activities of a series of synthesized peptides conclusively indicated that the minimum active sequence was Leu-His-Thr-Leu. The present study may shed light on the mechanism of neuronal cell damage in various neurodegenerative diseases.  相似文献   

19.
20.
In this paper we report a thermodynamic characterisation of stability and melting behaviour of four different triple helices at pH 6.0. The target duplex consists of 16 base pairs in alternate sequence of the type 5'-(purine)(m)(pyrimidine)(m)-3'. The four triplexes are formed by targeting the 16-mer duplex with an all pyrimidine 16-mer or 15-mer or 14-mer third strand. The 16-mer oligonucleotide contains a 3'-3' phosphodiester junction and corresponding triplex was named 16-mer P. The 14-mer oligonucleotide contains a non-nucleotide linker, the 1,2,3 propanetriol residue and the corresponding triplex was named 14-mer PT. For the 15-mer oligonucleotide both junctions were alternatively used and the relative triplexes were named 15-mer P and 15-mer PT, respectively. These linkers introduce the appropriate polarity inversion and let the third strand switch from one oligopurine strand of the duplex to the other. Thermal denaturation profiles indicate the initial loss of the third strand followed by the dissociation of the target duplex. Transition enthalpies, entropies and free energies were derived from differential scanning calorimetric measurements. The comparison of Gibbs energies reveals that a more stable triplex is obtained when in the third strand there is the lack of one nucleotide in the junction region and a propanetriol residue as linker was used. The thermodynamic data were discussed in light of molecular mechanics and dynamics calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号