首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is considered to be a novel anticancer therapy. To date, in most cases, single-chain variable fragments (scFvs) of murine origin have been used in CARs. However, this structure has limitations relating to the potential immunogenicity of mouse antigens in humans and the relatively large size of scFvs. For the first time, we used camelid nanobody (VHH) to construct CAR T cells against prostate specific membrane antigen (PSMA). The nanobody against PSMA (NBP) was used to show the feasibility of CAR T cells against prostate cancer cells. T cells were transfected, and then the surface expression of the CAR T cells was confirmed. Then, the functions of VHH-CAR T cell were evaluated upon coculture with prostate cancer cells. At the end, the cytotoxicity potential of NBPII-CAR in T cells was approximated by determining the cell surface expression of CD107a after encountering PSMA. Our data show the specificity of VHH-CAR T cells against PSMA+ cells (LNCaP), not only by increasing the interleukin 2 (IL-2) cytokine (about 400 pg/mL), but also the expression of CD69 by almost 38%. In addition, VHH-CAR T cells were proliferated by nearly 60% when cocultured with LNCaP, as compared with PSMA negative prostate cancer cell (DU-145), which led to the upregulation of CD107a in T cells upto 31%. These results clearly show the possibility of using VHH-based CAR T cells for targeted immunotherapy, which may be developed to target virtually any tumor-associated antigen for adoptive T-cell immunotherapy of solid tumors.  相似文献   

2.
Prostate-specific membrane antigen (PSMA) is a type II membrane protein that has attracted significant attention as a target for immunioscintigraphic and radioimmunotherapeutic applications for prostate cancer. However, definitive studies on its substrate and inhibitor specificity as well as protein-protein interactions have been somewhat limited by difficulties in the purification of native PSMA. In this study, we optimized the purification of native PSMA from LNCaP cells using conformational epitope-specific antibody-affinity chromatography. Western blot analysis and an HPLC-based enzymatic activity assay were used to compare the yield and activity of PSMA purified by different methods. The ratio of purified PSMA in a native and active conformation was determined by quantifying the amount of non-native PSMA not retained in a second antibody-affinity isolation. The addition of both a neutralization step and the inclusion of Zn(2+) to the equilibration buffer in desalting step provides considerable enhancement in the yield of active PSMA from LNCaP cells.  相似文献   

3.
4.
The interleukin-6 (IL-6) and the chemokine CCL5 are implicated in the development and progression of several forms of tumours including that of the prostate. The expression of the prostate specific membrane antigen (PSMA) is augmented in high-grade and metastatic tumors. Observations of the clinical behaviour of prostate tumors suggest that the increased secretion of IL-6 and CCL5 and the higher expression of PSMA may be correlated. We hypothesized that PSMA could be endowed with signalling properties and that its stimulation might impact on the regulation of the gene expression of IL-6 and CCL5. We herein demonstrate that the cross-linking of cell surface PSMA with specific antibodies activates the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 in prostate carcinoma LNCaP cells. As downstream effects of the PSMA-fostered RAS-RAC1-MAPK pathway activation we observed a strong induction of NF-κB activation associated with an increased expression of IL-6 and CCL5 genes. Pharmacological blockade with specific inhibitors revealed that both p38 and ERK1/2 participate in the phenomenon, although a major role exerted by p38 was evident. Finally we demonstrate that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically and in a dose-dependent manner and that CCL5 functioned by receptor-mediated activation of the STAT5-Cyclin D1 pro-proliferative pathway. The novel functions attributable to PSMA which are described in the present report may have profound influence on the survival and proliferation of prostate tumor cells, accounting for the observation that PSMA overexpression in prostate cancer patients is related to a worse prognosis.  相似文献   

5.
6.
Several monoclonal antibodies (mAbs) and novel mAb-based assays for the androgen receptors (AR) have been developed. Large amounts of the recombinant human AR protein produced by a baculovirus expression system were used as an antigen to produce mAbs. Twenty-nine AR-specific mAbs were first confirmed by Western blot analysis and were then characterized for their immunoglobulin isotypes, epitopes, and epitope localization in AR. Novel assays using flow cytometry and sandwich enzyme-linked immunosorbent assays (ELISA) were established to detect AR-expressing cells and to quantify soluble AR protein, respectively. Using immunostaining, we identified several anti-AR mAbs exclusively recognizing AR within the nuclei of the prostate cancer cell line LNCaP and of prostate tissues in both frozen and paraffin-embedded sections, whereas other mAbs could detect AR in both nuclear and cytoplasmic compartments. Interestingly, certain mAbs, such as G122-25 and G122-77, could distinguish the androgen-bound AR from the unoccupied AR. In sum, many purified AR protein and anti-AR mAbs, together with the assays developed, could be powerful tools for the study of functional AR and for the diagnosis of prostatic cancers.  相似文献   

7.
前列腺特异膜抗原在Pichia pastoris酵母中的表达及鉴定   总被引:2,自引:0,他引:2  
前列腺特异膜抗原是一种具有高度前列腺特异性的糖蛋白 ,其表达的增高与肿瘤的术后复发、激素抵抗及较差的预后正相关 ,在前列腺癌的诊断和治疗中有广泛的应用前景 .从前列腺癌组织提取总RNA ,利用RT PCR技术获得PSMA基因的全长序列 ,构建了重组酵母表达载体pPIC3.5K PSMA .电击法转化Pichiapastoris酵母 ,通过表型筛选和PCR鉴定证实该基因已稳定整合入Pichiapastoris酵母基因组中 .SDS PAGE显示 ,获得的PSMA蛋白分子量约 10 0kD ,表达产物经West ern印迹证实可特异地与PSMA单克隆抗体 4G5结合 .结果表明 ,成功地获得PSMA编码的cDNA并在酵母细胞中获得表达 .  相似文献   

8.
We have previously described the production of a recombinant melittin-based cytolytic immunotoxin (IT), scFv-mel-FLAG, in bacterial cells. While the IT exhibited specific cytotoxicity for a human lymphoblastoid cell line, HMy2, yields from expression were low. Here, we describe a baculovirus expression system for the overexpression and secretion of scFv-mel-FLAG. A novel snake phospholipase A2 inhibitor signal peptide was used to aid in the secretion of the immunotoxin. Sf21 insect cells infected with the recombinant virus secreted soluble scFv-mel-FLAG into the culture medium from which it was purified directly on an affinity column. The final yield of scFv-mel-FLAG was estimated at 3-5 mg/L, which was an improvement of 30-fold compared to expression in the prokaryotic system. The cell binding characteristics of the recombinant IT were assessed by flow cytometry using the antigen expressing cell line HMy2. ScFv-mel-FLAG bound specifically to HMy2 cells in direct binding assays and this binding was completely inhibited in the presence of an excess of soluble antigen. Significant cytotoxicity for HMy2 cells, measured by leakage of cytosolic LDH, was also observed for the IT at a concentration of 60 pmol/10(4) cells. Cytotoxicity was concentration dependent and was specific for antigen-positive cells. Thus the baculovirus expression system, under the control of a novel secretion signal, can be used for the production of soluble and functional recombinant cytolytic immunotoxins. To our knowledge, this is the first report of expression of a recombinant immunotoxin in the baculovirus expression vector system.  相似文献   

9.
During the progression of prostate cancer from androgen-dependence or sensitivity to androgen-independence, the overall expression of prostate specific membrane antigen (PSMA) increases with its appearance in plasma membrane. However, surprisingly some androgen-independent metastatic prostate cancer cell lines do not express this protein. Estradiol (E2) and basic fibroblast growth factor (bFGF) due to their recognized and strong involvement in prostate growth, development, and pathology were selected with the aim of restoring the expression of PSMA in markedly dedifferentiated prostate cancer PC-3 cells and in Du 145. E2 (10(-7)-10(-11)M) and bFGF (10ng/ml) stimulated the expression of mRNAs for PSMA (2- to 4-fold increase) that apparently were further translated and processed to its membrane form in LNCaP, PC-3, and Du 145 cells. The values of interaction force between the same anti-PSMA antibodies and all studied cells were almost identical (45-64pN), indicating antigenic similarity of the membrane form of PSMA expressed in LNCaP, PC-3, and Du 145 cells.  相似文献   

10.
Hormone-refractory prostate carcinomas as well as the neovasculature of different tumours express high levels of PSMA (prostate-specific membrane antigen). PSMA is a type II-transmembrane glycoprotein and a potential tumour marker for both diagnosis and passive immunotherapy. Here, we report on the association of PSMA with DRMs (detergent-resistant membranes) at different stages of the protein maturation pathway in human prostate carcinoma LNCaP cells. At least three PSMA glycoforms were biochemically identified based on their extractability behaviour in different non-ionic detergents. In particular, one precursor glycoform of PSMA is associated with Tween 20-insoluble DRMs, whereas the complex glycosylated protein segregates into membrane structures that are insoluble in Lubrol WX and display a different lipid composition. Association of PSMA with these membranes occurs in the Golgi compartment together with the acquisition of a native conformation. PSMA homodimers reach the plasma membrane of LNCaP cells in Lubrol WX-insoluble lipid/protein complexes. At the steady state, the majority of PSMA remains within these membrane microdomains at the cell surface. We conclude that the intracellular transport of PSMA occurs through populations of DRMs distinct for each biosynthetic form and cellular compartment.  相似文献   

11.
Prostate cancer is the most commonly diagnosed form of cancer and the second leading cancer-related death among men in the Western civilization. Since no effective therapy exists for this tumor after progression beyond resectable boundaries, there is an urgent need for new treatment strategies. Prostate specific membrane antigen (PSMA) represents an excellent target on prostate cancer cells, and therefore specific immunotherapy may be a novel therapeutic option for the management of this tumor. We constructed a fully recombinant immunotoxin (A5-PE40) from a single-chain antibody fragment (scFv) against cell-adherent PSMA and a truncated form of Pseudomonas exotoxin A (PE40) lacking its natural binding domain Ia. The scFv A5 was obtained from a mAb elicited with native PSMA by phage display technology and direct selection on cells carrying the antigen. The bacterially expressed and purified immunotoxin A5-PE40 specifically binds to PSMA-positive prostate cancer cells and induces a 50% reduction of viability (IC50) at a concentration of 20 pM, while PSMA-negative cells remain unaffected. Due to its high and specific toxicity this recombinant immunotoxin is a promising candidate for therapeutic applications in patients with prostate cancer.  相似文献   

12.
13.
In this study we developed, characterized and validated in vitro a functional superparagmagnetic iron-oxide based magnetic resonance contrast agent by conjugating a commercially available iron oxide nanoparticle, Molday ION Rhodamine-B Carboxyl (MIRB), with a deimmunized mouse monoclonal antibody (muJ591) targeting prostate-specific membrane antigen (PSMA). This functional contrast agent is intended for the specific and non-invasive detection of prostate cancer cells that are PSMA positive, a marker implicated in prostate tumor progression and metastasis. The two-step carbodiimide reaction used to conjugate the antibody to the nanoparticle was efficient and we obtained an elemental iron content of 1958±611 per antibody. Immunofluorescence microscopy and flow cytometry showed that the conjugated muJ591:MIRB complex specifically binds to PSMA-positive (LNCaP) cells. The muJ591:MIRB complex reduced cell adhesion and cell proliferation on LNCaP cells and caused apoptosis as tested by Annexin V assay, suggesting anti-tumorigenic characteristics. Measurements of the T2 relaxation time of the muJ591:MIRB complex using a 400 MHz Innova NMR and a multi-echo spin-echo sequence on a 3T MRI (Achieva, Philips) showed a significant T2 relaxation time reduction for the muJ591:MIRB complex, with a reduced T2 relaxation time as a function of the iron concentration. PSMA-positive cells treated with muJ591:MIRB showed a significantly shorter T2 relaxation time as obtained using a 3T MRI scanner. The reduction in T2 relaxation time for muJ591:MIRB, combined with its specificity against PSMA+LNCaP cells, suggest its potential as a biologically-specific MR contrast agent.  相似文献   

14.
Prostate-specific membrane antigen (PSMA), which is overexpressed in malignant prostate cancer (PCa), is an ideal target for imaging and therapy of PCa. We previously reported a PSMA imaging probe, 800CW-SCE, based on succinimidyl-Cys-C(O)-Glu (SCE) for optical imaging of PCa. In this study, we investigated the structure–activity relationships of novel SCE derivatives with five different near-infrared (NIR) fluorophores (IRDye 680LT, IRDye 750, Indocyanine Green, Cyanine 5.5, and Cyanine 7) as optical imaging probes targeting PSMA. An in vitro binding assay revealed that 800CW-SCE, 680LT-SCE, and 750-SCE exhibited higher binding affinity than 2-PMPA, which is known as a PSMA inhibitor. These three SCE derivatives were internalized into PSMA-positive cells (LNCaP cells) but not into PSMA-negative cells (PC-3 cells). In the in vivo imaging study, 800CW-SCE and 750-SCE were highly accumulated in LNCaP tumors but not in PC-3 tumors, and the ratio of LNCaP/PC-3 accumulation of 800CW-SCE was higher than that of 750-SCE. The present study may provide valuable molecular design information for the future development of new PSMA imaging probes based on the SCE scaffold.  相似文献   

15.
The differential display-polymerase chain reaction technique was employed to obtain a prostate-specific approximately 300-bp cDNA fragment. On screening the human prostate-lambdagt10 library with this fragment, a full-length approximately 1.5-kb cDNA encoding for a prostate antigen, designated as human novel prostate-specific antigen (hNPSA), was found. Extensive database searches revealed that the hNPSA cDNA is a novel sequence. It has an open reading frame (ORF) of 735-bp encoding for 245 amino acids (aa), with a calculated molecular mass of approximately 27kDa. Hydrophilicity analysis of the deduced aa sequence indicated that hNPSA is a membrane-anchored peptide. Analysis for tissue-specificity by Northern blot and RT-PCR-Southern blot procedures indicated that hNPSA is specifically expressed only in human prostate. The hNPSA (ORF) was subcloned into pET22b(+) vector and expressed using the histidine-tagged gene fusion system. The recombinant (r) protein of approximately 27kDa was purified and antibodies (Ab) were raised in rabbits. The rhNPSA Ab recognized a specific protein band of approximately 35kDa in solubilized human prostate tissue and not in any of the other 10 human tissues tested in the Western blot procedure. The hNPSA expression is upregulated 2.5- to 3-fold, both at the mRNA and protein levels in androgen-dependent LNCaP cells, as compared to normal whole prostate tissue. Antisense, but not the sense, phosphothiorate-conjugated oligonucleotides based on the hNPSA cDNA sequence significantly (p<0.001) inhibited proliferation of LNCaP cells in a concentration-dependent manner. Thus, the novel hNPSA, which has prostate-specific expression and seems to be involved in carcinogenesis, may have applications in the specific diagnosis and treatment of prostate cancer.  相似文献   

16.
Prostate-specific antigen (PSA) is a glycoprotein secreted by prostate epithelial cells. PSA is currently used as a marker of prostate carcinoma because high levels of PSA are indicative of a tumor situation. However, PSA tests still suffer from a lack of specificity to distinguish between benign prostate hyperplasia and prostate cancer. To determine whether PSA glycosylation could provide a means of differentiating between PSA from normal and tumor origins, N-glycan characterization of PSA from seminal fluid and prostate cancer cells (LNCaP cell line) by sequencing analysis and mass spectrometry was carried out. Glycans from normal PSA (that correspond to low and high pI PSA fractions) were sialylated biantennary complex structures, half of them being disialylated in the low pI PSA fraction and mostly monosialylated in the high pI PSA. PSA from LNCaP cells was purified to homogeneity, and its glycan analysis showed a significantly different pattern, especially in the outer ends of the biantennary complex structures. In contrast to normal PSA glycans, which were sialylated, LNCaP PSA oligosaccharides were all neutral and contained a higher fucose content. In 10-15% of the structures fucose was linked alpha1-2 to galactose, forming the H2 epitope absent in normal PSA. GalNAc was increased in LNCaP glycans to 65%, whereas in normal PSA it was only present in 25% of the structures. These carbohydrate differences allow a distinction to be made between PSA from normal and tumor origins and suggest a valuable biochemical tool for diagnosis and follow-up purposes.  相似文献   

17.
Prostate-specific membrane antigen (PSMA) is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs) along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009) PLoS One 4: e4608) we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for utilization of PSMA as a therapeutically suitable target in prostate cancer.  相似文献   

18.
Prostate cancer (PC) is the second most commonly occurring cancer in men. Conventional chemotherapy has wide variety of disadvantages such as high systemic toxicity and low selectivity. Targeted drug delivery is a promising approach to decrease side effects of therapy. Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer cells while low level of expression is observed in normal cells. In this study we describe the development of Glu-urea-Lys based PSMA-targeting conjugates with paclitaxel. A series of new PSMA targeting conjugates with paclitaxel was designed and synthesized. The cytotoxicity of conjugates was evaluated against prostate (LNCaP, 22Rv1 and PC-3) and non-prostate (Hek293T, VA13, A549 and MCF-7) cell lines. The most promising conjugate 21 was examined in vivo using 22Rv1 xenograft mice model. It demonstrated good efficiency comparable with paclitaxel, while reduced toxicity. 3D molecular docking study was also performed to understand underlying mechanism of binding and further optimization of the linker substructure and conjugates structure for improving the target affinity. These conjugates may be useful for further design of novel PSMA targeting delivery systems for PC.  相似文献   

19.
利用RT PCR技术 ,从前列腺癌组织总RNA中扩增人前列腺特异膜抗原 (PSMA)基因编码区序列 ,克隆至pcDNA3.1载体 ,以此为模板再次PCR扩增出PSMA膜外区cDNA(edPSMA) ,序列测定表明克隆获得的PSMA及edPSMA与基因库所登录的序列相一致。构建原核表达质粒pMAL c2x edPSMA ,经IPTG诱导表达的MBP edPSMA融合蛋白分子量约 12 0kD ,Westernblot证实表达产物可特异地与PSMA单克隆抗体 4G5结合。用直链淀粉琼脂糖凝胶 (Amyloseresin)亲和层析纯化蛋白质可得到电泳均一的融合蛋白 ,免疫BALB C小鼠制备多抗 ,获得效价为 1∶12 80 0的多克隆抗体 ,该抗体可用于前列腺癌组织标本PSMA表达的检测  相似文献   

20.
Glutamate Carboxypeptidase II (also known as Prostate Specific Membrane Antigen—PSMA) is an important marker in the diagnosis of prostate cancer, however, relatively little is known about its biochemical and structure-function characteristics. We have expressed mutant forms of PSMA and have started to address the roles of three putative domains of PSMA in its cellular localization and peptidase activity. Three mutants, a full-length recombinant PSMA (rPSMA-FL), one expressing only the proposed extracellular domain of PSMA (rPSMA-ECD) and one form omitting the proposed transmembrane domain (rPSMA-ΔTMD) have been produced in human cells via a mammalian expression vector system. We show that rPSMA-FL is associated with the cell surface membrane; so too is rPSMA-ΔTMD even though it lacks the proposed transmembrane domain, whereas rPSMA-ECD has a cytosolic localization. Only rPSMA-FL retains functional hydrolytic activity and is similarly glycosylated to PSMA found in the cultured prostate cancer cell line LNCaP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号