首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Prior studies of the metal ion dependence of the self-cleavage reaction of the HDV genomic ribozyme led to a mechanistic framework in which the ribozyme can self-cleave by multiple Mg2+ ion-independent and -dependent channels [Nakano et al. (2001) Biochemistry 40, 12022]. In particular, channel 2 involves cleavage in the presence of a structural Mg2+ ion without participation of a catalytic divalent metal ion, while channel 3 involves both structural and catalytic Mg2+ ions. In the present study, experiments were performed to probe the nature of the various divalent ion sites and any specificity for Mg2+. A series of alkaline earth metal ions was tested for the ability to catalyze self-cleavage of the ribozyme under conditions that favor either channel 2 or channel 3. Under conditions that populate primarily channel 3, nearly identical K(d)s were obtained for Mg2+, Ca2+, Ba2+, and Sr2+, with a slight discrimination against Ca2+. In contrast, under conditions that populate primarily channel 2, tighter binding was observed as ion size decreases. Moreover, [Co(NH3)6]3+ was found to be a strong competitive inhibitor of Mg2+ for channel 3 but not for channel 2. The thermal unfolding of the cleaved ribozyme was also examined, and two transitions were found. Urea-dependent studies gave m-values that allowed the lower temperature transition to be assigned to tertiary structure unfolding. The effects of high concentrations of Na+ on the melting temperature for RNA unfolding and the reaction rate revealed ion binding to the folded RNA, with significant competition of Na+ (Hill coefficient of 1.5-1.7) for a structural Mg2+ ion and an unusually high intrinsic affinity of the structural ion for the RNA. Taken together, these data support the existence of two different classes of metal ion sites on the ribozyme: a structural site that is inner sphere with a major electrostatic component and a preference for Mg2+, and a weak catalytic site that is outer sphere with little preference for a particular divalent ion.  相似文献   

2.
In elucidating functionally important single-stranded loop regions derived mainly from three models in genomic hepatitis delta virus (HDV) ribozyme possessing self-cleavage activity, we have constructed several internal deletion variants of the HDV133 molecule (654-786 nt on genomic RNA) by oligonucleotide-directed mutagenesis. When self-cleavage activities were compared among variants, the HDV133DI-1 (deletion of 701-718 nt) and HDV133DI-3 (deletion of 740-752 nt) ribozyme could maintain their self-cleavage activity, despite at reduced level. However, the activity could be regained in both mutants by some extent under partially denaturing conditions. These results suggest that the above two single-stranded RNA loop regions in HDV ribozyme are not part of the catalytic core but might be involved in the stability of the molecule. In contrast, deletion mutants such as HDV133DI-2 (deletion of 696-722 nt), HDV88DI-1 (deletion of 701-718 nt), HDV88DI-2 (deletion of 696-722 nt), and HDV88DI-4 (deletion of 733-760 nt) abolished catalytic activity. These results suggest that the remaining single-stranded regions of bases between 726-731 and 762-766 in the HDV88 ribozyme may be the potential regions to interact with Mg2+ ions.  相似文献   

3.
The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.  相似文献   

4.
Nakano S  Proctor DJ  Bevilacqua PC 《Biochemistry》2001,40(40):12022-12038
Hepatitis delta virus (HDV) uses genomic and antigenomic ribozymes in its replication cycle. We examined ribozyme self-cleavage over eight orders of magnitude of Mg(2+) concentration, from approximately 10(-9) to 10(-1) M. These experiments were carried out in 1 M NaCl to aid folding of the ribozyme and to control the ionic strength. The concentration of free Mg(2+) ions was established using an EDTA-Mg(2+) buffered system. Over the pH range of 5-9, the rate was independent of Mg(2+) concentration up to 10(-7) M, and of the addition of a large excess of EDTA. This suggests that in the presence of 1 M NaCl, the ribozyme can fold and cleave without using divalent metal ions. Br?nsted analysis under these reaction conditions suggests that solvent and hydroxide ions may play important roles as general base and specific base catalysts. The observed rate constant displayed a log-linear dependence on intermediate Mg(2+) concentration from approximately 10(-7) to 10(-4) M. These data combined with the shape of the pH profile under these conditions are consistent with the binding of at least one structural divalent metal ion that does not participate in catalysis and binds tighter at lower pH. No evidence for a catalytic role for Mg(2+) was found at low or intermediate Mg(2+) concentrations. Addition of Mg(2+) to physiological and higher concentrations, from 10(-3) to 10(-1) M, revealed a second saturable divalent metal ion which binds tighter at high pH. The shape of the pH profile is inverted relative to that at low Mg(2+) concentrations, consistent with a general acid-base catalysis mechanism in which a cytosine (C75) acts as the general acid and a hydroxide ion from the divalent metal ion, or possibly from solvent, acts as the base. Overall, the data support a model in which the HDV ribozyme can self-cleave by multiple divalent ion-independent and -dependent channels, and in which the contribution of Mg(2+) to catalysis is modest at approximately 25-fold. Surface electrostatic potential maps were calculated on the self-cleaved form of the ribozyme using the nonlinear Poisson-Boltzmann equation. These calculations revealed several patches of high negative potential, one of which is present in a cleft near N4 of C75. These calculations suggest that distinct catalytic and structural metal ion sites exist on the ribozyme, and that the negative potential at the active site may help shift the pK(a) for N3 of C75 toward neutrality.  相似文献   

5.
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.  相似文献   

6.
Perrotta AT  Been MD 《Biochemistry》2006,45(38):11357-11365
Activity of the two ribozymes from hepatitis delta virus in monovalent salts was examined and compared to activity in Mg2+. Both ribozymes self-cleaved in high concentrations of monovalent cations, and an active site cytosine was required for cleavage activity under those conditions. Cleavage rates were 30-50-fold higher for reactions in LiCl than for reactions in NaCl or NH4Cl, and a thio effect indicated that chemistry was rate-determining for cleavage of the HDV genomic ribozyme in LiCl. Still, in LiCl, there was a more than 100-fold increase in the rate when MgCl2 was included in the reaction. However, the pH-rate profiles for the reactions in LiCl with and without MgCl2 were both bell-shaped with the pH optima in the neutral range. These findings support the idea that monovalent cations can partially substitute for divalent metal ions in the HDV ribozymes, although a divalent metal ion is more effective in supporting catalysis. The absence of a dramatic change in the general shape of pH-rate profiles in LiCl, relative to the profile for reactions including Mg2+, is in contrast to earlier data for the reactions in NaCl and limits our interpretation of the specific role played by the divalent metal ion in the catalytic mechanism.  相似文献   

7.
The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, and for efficient self- (or cis-) cleavage. Comparison of recently solved crystal structures of the cleavage precursor and 3' product indicates that a significant conformational switch is required for catalysis by the genomic HDV ribozyme. Here, we have used the lanthanide metal ion terbium(III) to footprint the precursor and product solution structures of the cis-acting antigenomic HDV ribozyme. Inhibitory Tb(3+) binds with high affinity to similar sites on RNA as Mg(2+) and subsequently promotes slow backbone scission. We find subtle, yet significant differences in the terbium(III) footprinting pattern between the precursor and product forms of the antigenomic HDV ribozyme, consistent with differences in conformation as observed in the crystal structures of the genomic ribozyme. In addition, UV melting profiles provide evidence for a less tight tertiary structure in the precursor. In both the precursor and product we observe high-affinity terbium(III) binding sites in joining sequence J4/2 (Tb(1/2) approximately 4 microM) and loop L3, which are key structural components forming the catalytic core of the HDV ribozyme, as well as in several single-stranded regions such as J1/2 and the L4 tetraloop (Tb(1/2) approximately 50 microM). Sensitized luminescence spectroscopy confirms that there are at least two affinity classes of Tb(3+) binding sites. Our results thus demonstrate that a significant conformational change accompanies catalysis in the antigenomic HDV ribozyme in solution, similar to the catalytic conformational switch observed in crystals of the genomic form, and that structural and perhaps catalytic metal ions bind close to the catalytic core.  相似文献   

8.
The natural substrate cleaved by the hepatitis delta virus (HDV) ribozyme contains a 3',5'-phosphodiester linkage at the cleavage site; however, a 2',5'-linked ribose-phosphate backbone can also be cleaved by both trans-acting and self-cleaving forms of the HDV ribozyme. With substrates containing either linkage, the HDV ribozyme generated 2',3'-cyclic phosphate and 5'-hydroxyl groups suggesting that the mechanisms of cleavage in both cases were by a nucleophilic attack on the phosphorus center by the adjacent hydroxyl group. Divalent metal ion was required for cleavage of either linkage. However, although the 3',5'-linkage was cleaved slightly faster in Ca2+ than in Mg2+, the 2',5'-linkage was cleaved in Mg2+ (or Mn2+) but not Ca2+. This dramatic difference in metal-ion specificity is strongly suggestive of a crucial metal-ion interaction at the active site. In contrast to the HDV ribozymes, cleavage at a 2',5'-phosphodiester bond was not efficiently catalyzed by the hammerhead ribozyme. The relaxed linkage specificity of the HDV ribozymes may be due in part to lack of a rigid binding site for sequences 5' to the cleavage site.  相似文献   

9.
Edwards TE  Sigurdsson ST 《Biochemistry》2005,44(38):12870-12878
Electron paramagnetic resonance (EPR) spectroscopy was used to examine changes in internal structure and dynamics of the hammerhead ribozyme upon metal ion induced folding, changes in pH, and the presence and absence of ribozyme inhibitors. A nitroxide spin-label was attached to nucleotide U7 of the HH16 catalytic core, and this modified ribozyme was observed to retain catalytic activity. U7 was shown by EPR spectroscopy to be more mobile in the ribozyme-product complex than in either the unfolded ribozyme or the ribozyme-substrate complex. A two-step divalent metal ion dependent folding pathway was observed for the ribozyme-substrate complex with a weak first transition observed at 0.25 mM Mg2+ and a strong second transition observed around 10 mM Mg2+, in agreement with studies using other biophysical and biochemical techniques. Previously, ribozyme activity was observed in the absence of divalent metal ions and the presence of high concentrations of monovalent metal ions, although the activity was less than that observed in the presence of divalent metal ions. Here, we observed similar dynamics for U7 in the presence of 4 M Na+ or Li+, which were distinctively different than that observed in the presence of 10 mM Mg2+, indicating that U7 of the catalytic core forms a different microenvironment under monovalent versus divalent metal ion conditions. Interestingly, the catalytically efficient microenvironment of U7 was similar to that observed in a solution containing 1 M Na+ upon addition of one divalent metal ion per ribozyme. In summary, these results demonstrate that changes in local dynamics, as detected by EPR spectroscopy, can be used to study conformational changes associated with RNA folding and function.  相似文献   

10.
Golden BL 《Biochemistry》2011,50(44):9424-9433
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.  相似文献   

11.
The hammerhead cleavage reaction in monovalent cations   总被引:10,自引:3,他引:7       下载免费PDF全文
Recently, Murray et al. (Chem Biol, 1998, 5:587-595) found that the hammerhead ribozyme does not require divalent metal ions for activity if incubated in high (> or =1 M) concentrations of monovalent ions. We further characterized the hammerhead cleavage reaction in the absence of divalent metal. The hammerhead is active in a wide range of monovalent ions, and the rate enhancement in 4 M Li+ is only 20-fold less than that in 10 mM Mg2+. Among the Group I monovalent metals, rate correlates in a log-linear manner with ionic radius. The pH dependence of the reaction is similar in 10 mM Mg2+, 4 M Li+, and 4 M Na+. The exchange-inert metal complex Co(NH3)3+ also supports substantial hammerhead activity. These results suggest that a metal ion does not act as a base in the reaction, and that the effects of different metal ions on hammerhead cleavage rates primarily reflect structural contributions to catalysis.  相似文献   

12.
Tinsley RA  Harris DA  Walter NG 《Biochemistry》2004,43(28):8935-8945
The ability of divalent metal ions to participate in both structure formation and catalytic chemistry of RNA enzymes (ribozymes) has made it difficult to separate their cause and effect in ribozyme function. For example, the recently solved crystal structures of precursor and product forms of the cis-cleaving genomic hepatitis delta virus (HDV) ribozyme show a divalent metal ion bound in the active site that is released upon catalysis due to an RNA conformational change. This conformational switch is associated with a repositioning of the catalytically involved base C75 in the active-site cleft, thus controlling catalysis. These findings confirm previous data from fluorescence resonance energy transfer (FRET) on a trans-acting form of the HDV ribozyme that found a global conformational change to accompany catalysis. Here, we further test the conformational switch model by measuring the Mg(2+) dependence of the global conformational change of the trans-acting HDV ribozyme, using circular dichroism and time-resolved FRET as complementary probes of secondary and tertiary structure formation, respectively. We observe significant differences in both structure and Mg(2+) affinity of the precursor and product forms, in the presence and absence of 300 mM Na(+) background. The precursor shortens while the product extends with increasing Mg(2+) concentration, essentially amplifying the structural differences observed in the crystal structures. In addition, the precursor has an approximately 2-fold and approximately 13-fold lower Mg(2+) affinity than the product in secondary and tertiary structure formation, respectively. We also have compared the C75 wild-type with the catalytically inactive C75U mutant and find significant differences in global structure and Mg(2+) affinity for both their precursor and product forms. Significantly, the Mg(2+) affinity of the C75 wild-type is 1.7-2.1-fold lower than that of the C75U mutant, in accord with the notion that C75 is essential for a catalytic conformational change that leads to a decrease in the local divalent metal ion affinity and release of a catalytic metal. Thus, a consistent picture emerges in which divalent metal ions and RNA functional groups are intimately intertwined in affecting structural dynamics and catalysis in the HDV ribozyme.  相似文献   

13.
C A Grosshans  T R Cech 《Biochemistry》1989,28(17):6888-6894
A shortened form of the self-splicing intervening sequence RNA of Tetrahymena thermophila acts as an enzyme, catalyzing sequence-specific cleavage of RNA substrates. We have now examined the metal ion requirements of this reaction. Mg2+ and Mn2+ are the only metal ions that by themselves give RNA enzyme activity. Atomic absorption spectroscopy indicates that Zn, Cu, Co, and Fe are not present in amounts equimolar to the RNA enzyme and when added to reaction mixtures do not facilitate cleavage. Thus, these ions can be eliminated as cofactors for the reaction. While Ca2+ has no activity by itself, it alleviates a portion of the Mg2+ requirement; 1 mM Ca2+ reduces the Mg2+ optimum from 2 to 1 mM. These results, combined with studies of the reactivity of mixtures of metal ions, lead us to postulate that two classes of metal ion binding sites are required for catalysis. Class 1 sites have more activity with Mn2+ than with Mg2+, with the other divalent ions and Na+ and K+ having no activity. It is not known if ions located at class 1 sites have specific structural roles or are directly involved in active-site chemistry. Class 2 sites, which are presumably structural, have an order of preference Mg2+ greater than or equal to Ca2+ greater than Mn2+ and Ca2+ greater than Sr2+ greater than Ba2+, with Zn2+, Cu2+, Co2+, Na+, and K+ giving no detectable activity over the concentration range tested.  相似文献   

14.
In order to characterize structure-function relationships, the kinetic behavior of chimeric RNA/DNA ribozyme was compared with that of all RNA ribozyme. Determined kcat values were proven to represent the chemical-cleavage step and not the product-dissociation step. In agreement with the finding by Dahm and Uhlenbeck [Biochemistry 30, 9464-9469 (1991)], various metal ions, including Co2+ and Ca2+ with the ionic radius of 0.65 and 1.0 A, respectively, could support hammerhead cleavage for both types of ribozyme. Measurements of kinetic parameters in the presence of various divalent metal ions revealed that DNA arms always enhanced kcat values. Chemical-probing data using dimethylsulfate indicated that the catalytic-loop structures of all-RNA and chimeric ribozymes were nearly identical with the exception of enhanced termination of primer extension reactions at C3 in the case of the chimeric ribozyme. These observations and others demonstrate that DNA substitution in non-catalytic-loop regions increases chemical-cleavage activity, possibly with an accompanying very subtle change in the structure.  相似文献   

15.
Perrotta AT  Been MD 《Biochemistry》2007,46(17):5124-5130
The two ribozymes of hepatitis delta virus (HDV) cleave faster in divalent metal ions than in monovalent cations, and a variety of divalent metal ions can act as catalysts in supporting these higher rates. Although the ribozymes are closely related in sequence and structure, they display a different metal ion preference; the genomic form cleaves moderately faster in Mg2+ than in Ca2+ while the reverse is true for the antigenomic ribozyme. This difference raises questions about understanding the catalytic role of the metal ion in the reaction. We found that the metal ion reactivity preference correlated with the identity of a single nucleotide 5' of the cleavage site (-1 position). It is a U in the genomic sequence and a C in the antigenomic sequence. With both ribozymes, the reactivity preference for Mg2+ and Ca2+ could be reversed with a change at this position (C to U or U to C). Moreover, with an A at position -1, there was a relative increase in cleavage rates in low concentrations of Mn2+ for both ribozymes. Metal ion reactivity preference was also linked to changes in pH, and the pH-rate profiles could be shifted with nucleotide changes at position -1. Together, the data provide biochemical evidence in support of an organized active site, as seen in the crystal structures, where at least one metal ion, an ionizable group, and the conformation of the phosphate backbone at the cleavage site interact in concert to promote cleavage.  相似文献   

16.
Although the addition of various divalent metals to beta-galactosidase resulted in apparent activation, only Mg2+ and Mn2+ actually did activate. The apparent activation by the other divalent metals was shown to be due to Mg2+ impurities. Calcium did not activate, but experiments suggested that it did bind. Other divalent metals which were studied failed to bind. The dissociation constants for Mg2+ and Mn2+ were 2.8 X 10(-7) and 1.1 X 10(-8) M, respectively, and in each case one ion bound per monomer. These constants corresponded very closely to apparent values which were obtained from activation studies. The apparent binding constant for Ca2+, obtained from competition studies, was 1.5 X 10(-5) M. Data were obtained which showed that Mg2+, Mn2+, and Ca2+ all compete for binding at a single site. Of interest and of possible molecular biological importance was the observation that, while Mg2+ bound noncooperatively (n = 1.0), Mn2+ did so in a highly cooperative manner (n = 3.4). The binding of Mn2+ (as compared to Mg2+) resulted in a twofold drop in the Vmax for the hydrolysis and transgalactosylis reactions of lactose but had little effect on the Vmax of hydrolysis of allolactose, p-nitrophenyl beta-D-galactopyranoside (PNPG), or o-nitrophenyl beta-D-galactopyranoside (ONPG); Km values were not effected differently for any of the substrates by Mn2+ as compared to Mg2+. When very low levels of divalent metal ions were present (0.01 M EDTA added) or when Ca2+ was bound with lactose as the substrate, a greater decrease was observed in the rate of the transgalactosylic reaction than in the rate of the hydrolytic reaction, and the Km values for lactose and ONPG were increased. Of the three divalent metal ions which bound to beta-galactosidase, only Mn2+ had significant stabilizing effects toward denaturing urea and heat conditions.  相似文献   

17.
18.
N Lee  H Suga 《Biochemistry》2001,40(45):13633-13643
Numerous studies on naturally occurring ribozymes have shown that the functional roles of metal ions in promoting RNA catalysis are diverse. Earlier studies performed on the in vitro selected aminoacyl-transferase ribozyme (ATRib) have revealed that a fully hydrated Mg2+ ion plays an essential role in catalysis [Suga, H., Cowan, J. A., and Szostak, J. W. (1998) Biochemistry 28, 10118-10125]. More recently, we have evolved this ATRib into a bifunctional ribozyme, called AD02 [Lee, N., et al. (2000) Nat. Struct. Biol. 7, 28-33]. This new ribozyme consists of two catalytic domains, the original ATRib domain and a new glutamine-recognition (QR) domain, and exhibits a function of charging glutamine to tRNA. Here we elucidate crucial roles of metal ions involved in the QR domain, that are distinct from those in the ATRib domain. The metal ions in the QR domain require innersphere coordinations, and both Mg2+ and Ca2+ can support catalysis. Extensive Tb3+-Mg2+ and Tb3+-Co(NH3)6(3+) competition cleavage experiments have shown that the QR domain has high and low affinity metal binding sites, which are involved in the Mg2+-dependent structural alteration to form the glutamine binding site [Lee, N., and Suga, H. (2001) RNA 7, 1043-1051]. Kinetic studies in the presence of divalent and monovalent ions have suggested that the essential role of the metal ions in the QR domain is most likely structural.  相似文献   

19.
Human hepatitis delta virus (HDV) ribozyme can catalyze self-cleavage reaction in the presence of Mg2+ ions, yielding products with 2',3'-cyclic phosphate and 5'-OH termini as do hammerhead and hairpin ribozymes. Recently, the tertiary structure of 3'-cleaved product of genomic HDV ribozyme was solved by X-ray crystallographic analysis. In this structure three single-stranded regions (SSrA, -B and -C) interacts intricately with hydrogen bonds between bases, phosphate oxygens and 2'-OHs to form nested double pseudoknot structure. Especially two Watson-Crick base pairs, 726G-710C and 727G-709C, between SSrA and SSrC, seems to be important for compact folding. To characterize the necessity of the two base pairs, we performed in vitro selection of active ribozymes using random RNA pool which mutated at 709, 710, 726 and 727. The result indicates that basically one G-C base pair is necessary for the activity.  相似文献   

20.
Using Thr(P)-inhibitor-1 and Ser(P)-casein as substrates, studies on the activation of calcineurin purified from bovine brain have been carried out. The phosphatase requires the synergistic action of Ca2+, calmodulin and another divalent cation (Mg2+, Mn2+, Co2+ or Ni2+, but not Zn2+) for full expression of its activity. Ca2+ and Ca2+ X calmodulin act as allosteric activators to transform the phosphatase to a relaxed conformation, while Mg2+ acts solely as a cofactor for the catalytic action of the enzyme. In addition to their function as cofactors for catalysis, transition metal ions can also substitute for Ca2+ as allosteric activators. Ca2+ and calmodulin exert their activating effects mainly by increasing the Vm of the phosphatase reaction with little effect on the Km values for the substrates or on the KA values for the divalent cation cofactors. The predominant factor in dictating the catalytic properties of calcineurin is the divalent cation cofactor. For example, with Mg2+ as a cofactor, the phosphatase exhibits an optimum around pH 8.0-8.5; while with a transition metal ion as a cofactor, the optimum is around pH 7.0-7.5, regardless of whether Thr(P)-inhibitor-1 or Ser(P)-casein serves as a substrate, in the absence or the presence of Ca2+ X calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号