首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Su YN  Hung CC  Lin SY  Chen FY  Chern JP  Tsai C  Chang TS  Yang CC  Li H  Ho HN  Lee CN 《PloS one》2011,6(2):e17067

Background

Spinal muscular atrophy (SMA) is the most common neuromuscular autosomal recessive disorder. The American College of Medical Genetics has recently recommended routine carrier screening for SMA because of the high carrier frequency (1 in 25–50) as well as the severity of that genetic disease. Large studies are needed to determine the feasibility, benefits, and costs of such a program.

Methods and Findings

This is a prospective population-based cohort study of 107,611 pregnant women from 25 counties in Taiwan conducted during the period January 2005 to June 2009. A three-stage screening program was used: (1) pregnant women were tested for SMA heterozygosity; (2) if the mother was determined to be heterozygous for SMA (carrier status), the paternal partner was then tested; (3) if both partners were SMA carriers, prenatal diagnostic testing was performed. During the study period, a total of 2,262 SMA carriers with one copy of the SMN1 gene were identified among the 107,611 pregnant women that were screened. The carrier rate was approximately 1 in 48 (2.10%). The negative predictive value of DHPLC coupled with MLPA was 99.87%. The combined method could detect approximately 94% of carriers because most of the cases resulted from a common single deletion event. In addition, 2,038 spouses were determined to be SMA carriers. Among those individuals, 47 couples were determined to be at high risk for having offspring with SMA. Prenatal diagnostic testing was performed in 43 pregnant women (91.49%) and SMA was diagnosed in 12 (27.91%) fetuses. The prevalence of SMA in our population was 1 in 8,968.

Conclusion

The main benefit of SMA carrier screening is to reduce the burden associated with giving birth to an affected child. In this study, we determined the carrier frequency and genetic risk and provided carrier couples with genetic services, knowledge, and genetic counseling.  相似文献   

2.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with a newborn prevalence of 1 in 10,000, and a carrier frequency of 1 in 40-60 individuals. The SMA locus has been mapped to chromosome 5q11.2-13. The disease is caused by a deletion of the SMN gene, often encompassing other genes and microsatellite markers. The SMN gene is present in two highly homologous copies, SMN1 and SMN2, differing at five nucleotide positions. Only homozygous SMN1 mutations cause the disease. The sequence similarity between the SMN1 and SMN2 genes can make molecular diagnosis and carrier identification difficult. We developed a sensitive and reliable molecular test for SMN1 carrier identification, by setting up a nonradioactive single strand conformation polymorphism (SSCP)-based method, which allows for the quantification of the amount of the SMN1 gene product with respect to a control gene. The assay was validated in 56 obligate (ascertained) carriers and 20 (ascertained) noncarriers. The sensitivity of the test is 96.4%, and its specificity, 98%. In addition, 6 of 7 SMA patients without homozygous deletions presented with a heterozygous deletion, suggesting a concomitant undetected point mutation on the nondeleted SMN1 allele. Therefore, the present test is effective for detecting compound hemizygote patients, for testing carriers in SMA families, and for screening for SMA heterozygotes in the general population.  相似文献   

3.
Spinal muscular atrophy with respiratory distress (SMARD1) is an autosomal recessive neuromuscular disease caused by mutations in the IGHMBP2 gene, encoding the immunoglobulin μ‐binding protein 2, leading to motor neuron degeneration. It is a rare and fatal disease with an early onset in infancy in the majority of the cases. The main clinical features are muscular atrophy and diaphragmatic palsy, which requires prompt and permanent supportive ventilation. The human disease is recapitulated in the neuromuscular degeneration (nmd) mouse. No effective treatment is available yet, but novel therapeutical approaches tested on the nmd mouse, such as the use of neurotrophic factors and stem cell therapy, have shown positive effects. Gene therapy demonstrated effectiveness in SMA, being now at the stage of clinical trial in patients and therefore representing a possible treatment for SMARD1 as well. The significant advancement in understanding of both SMARD1 clinical spectrum and molecular mechanisms makes ground for a rapid translation of pre‐clinical therapeutic strategies in humans.  相似文献   

4.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with a carrier frequency of approximately 1 in 40. Approximately 95% of patients have homozygous deletions of exon 7 and/or 8 of the SMN1 gene. Carrier testing for SMA is relatively complex and requires quantitative polymerase chain reaction (PCR) of genomic DNA to determine SMN1 copy number. The purpose of this study was to assess the feasibility of carrier testing for SMA in males, by nested PCR analysis of SMN1 deletions in single sperm cells. A nested PCR method was developed to amplify SMN1 exon 7 in single cells. Restriction enzyme digestion with DraI was used to differentiate between the highly homologous SMN1 and SMN2 genes. Single sperm cells from five known SMA carriers and six noncarriers were analyzed. Among the five carriers, a total of 132 single sperm cells were analyzed and SMN1 exon 7 deletion was detected in 68 cells (51.5%). In contrast, among the six noncarriers, a total of 136 single sperm cells were analyzed. Of these, an apparent SMN1 exon 7 deletion was detected in four sperm cells. This was interpreted as an allele dropout (ADO) rate of 2.9%. We conclude that nested PCR of SMN1 exon 7 is an accurate and reproducible method for detection of SMA male carriers with a SMN1 deletion.  相似文献   

5.
The molecular bases of spinal muscular atrophy   总被引:12,自引:0,他引:12  
Spinal muscular atrophy (SMA) is a common recessive autosomal disorder characterized by degeneration of motor neurons of the spinal cord. SMA is caused by mutations of the survival of motor neuron gene that encodes a multifunctional protein, and mouse models have been generated. These advances represent starting points towards an understanding of the pathophysiology of this disease and the design of therapeutic strategies in SMA.  相似文献   

6.
Spinal muscular atrophy (SMA) is the second most common lethal autosomal recessive disorder of childhood, affecting approximately 1 in 6,000-10,000 births, with a carrier frequency of 1 in 40-60. There is no effective cure or treatment for this disease. Thus, the availability of prenatal testing is important. The aim of this study was to establish an efficient and rapid method for prenatal diagnosis of SMA and genetic counseling in families with risk for having a child with SMA. In this paper we present the results from prenatal diagnosis in Macedonian SMA families using direct analysis of fetal DNA. The probands of these families were previously found to be homozygous for a deletion of exons 7 and 8 of SMN1 gene. DNA obtained from chorionic villas samples and amniocytes was analyzed for deletions in SMN gene. SMN exon 7 and 8 deletion analysis was performed by polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP). Of the 12 prenatal diagnoses, DNA analysis showed normal results in eight fetuses. Four of the fetuses were homozygote for a deletion of exons 7 and 8 of SMN1. After genetic counseling, the parents of the eight normal fetuses decided to continue the pregnancy, while in the four families with affected fetuses, the pregnancy was terminated. The results were confirmed after birth.  相似文献   

7.
8.
脊髓性肌萎缩症(spinal muscular atrophy, SMA)是一种儿童时期较为常见的神经肌肉病,属于常染色体隐性遗传。绝大多数SMA由运动神经元存活基因1 (survival motor neuron 1, SMN1)的纯合缺失突变所致。而SMN1的2+0基因型个体作为一种特殊的SMA携带者,给携带者筛查以及家系的遗传咨询带来了巨大的挑战。已有研究表明,g.27134T>G和g.27706_27707delAT多态位点变异对于Ashkenazi犹太人群中的2+0基因型个体具有提示作用。为进一步探究这两个多态位点是否在中国人群也具有特异性,本研究纳入了44例家系成员和204例已知SMN1基因拷贝数的对照样本。44例家系成员来自于9个无关的SMN1基因纯合缺失的SMA家系,先证者双亲之一疑似为2+0基因型携带者。利用多重连接探针扩增(multiplex ligation-dependent probe amplification,MLPA)和短串联重复(short tandem repeat, STR)连锁分析进行基因型的鉴定以及多态位点的筛查,最终通过对家系三代成员或多子女家系两代成员的分析确定了9个家系中的10例个体为2+0基因型携带者,多态位点筛查显示1例携带3拷贝SMN1基因的个体同时存在g.27134T>G和g.27706_27707delAT多态位点的变异。因此,本研究通过对2+0基因型携带者的鉴定,为家系遗传病的诊断提供了精准的遗传咨询。g.27134T>G和g.27706_27707delAT多态位点可能与中国人群2+0基因型个体的关联度较低,尚需寻找中国人群特异的多态位点以提高2+0基因型携带者的检出率。  相似文献   

9.
Genetic testing and risk assessment for spinal muscular atrophy (SMA)   总被引:20,自引:0,他引:20  
Ogino S  Wilson RB 《Human genetics》2002,111(6):477-500
Spinal muscular atrophy (SMA) is one of the most common autosomal recessive diseases, affecting approximately 1 in 10,000 live births, and with a carrier frequency of approximately 1 in 50. Because of gene deletion or conversion, SMN1 exon 7 is homozygously absent in approximately 94% of patients with clinically typical SMA. Approximately 30 small intragenic SMN1 mutations have also been described. These mutations are present in many of the approximately 6% of SMA patients who do not lack both copies of SMN1, whereas SMA of other patients without a homozygous absence of SMN1 is unrelated to SMN1. A commonly used polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP) assay can be used to detect a homozygous absence of SMN1 exon 7. SMN gene dosage analyses, which can determine the copy numbers of SMN1 and SMN2 (an SMN1 homolog and a modifier for SMA), have been developed for SMA carrier testing and to confirm that SMN1 is heterozygously absent in symptomatic individuals who do not lack both copies of SMN1. In conjunction with SMN gene dosage analysis, linkage analysis remains an important component of SMA genetic testing in certain circumstances. Genetic risk assessment is an essential and integral component of SMA genetic testing and impacts genetic counseling both before and after genetic testing is performed. Comprehensive SMA genetic testing, comprising PCR-RFLP assay, SMN gene dosage analysis, and linkage analysis, combined with appropriate genetic risk assessment and genetic counseling, offers the most complete evaluation of SMA patients and their families at this time. New technologies, such as haploid analysis techniques, may be widely available in the future.  相似文献   

10.
Autosomal recessive and dominant inheritance of proximal spinal muscular atrophy (SMA) are well documented. Several genetic studies found a significant deviation from the assumption of recessive inheritance in SMA, with affected children in one generation. The existence of new autosomal dominant mutations has been assumed as the most suitable explantation, which is supported by three observations of this study: (1) The segregation ratio calculated in 333 families showed a significant deviation from autosomal recessive inheritance in the milder forms of SMA (P = .09 +/- .06 for onset at 10-36 mo and .13 +/- .07 for onset at > 36 mo; and P = .09 +/- .07 for SMA IIIa and .12 +/- .07 for SMA IIIb). (2) Three families with affected subjects in two generations are reported, in whom the disease could have started as an autosomal dominant mutation. (3) Linkage studies with chromosome 5q markers showed that in 5 (5.4%) of 93 informative families the patient shared identical haplotypes with at least one healthy sib. Other mechanisms, such as the existence of phenocopies, pseudodominance, or a second autosomal recessive gene locus, cannot be excluded in single families. The postulation of spontaneous mutations, however, is a suitable explanation for all three observations. Estimated risk figures for genetic counseling are given.  相似文献   

11.
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive neuromuscular disorder caused by mutations in the IGHMBP2 gene, which encodes immunoglobulin μ‐binding protein 2, leading to progressive spinal motor neuron degeneration. We review the data available in the literature about SMARD1. The vast majority of patients show an onset of typical symptoms in the first year of life. The main clinical features are distal muscular atrophy and diaphragmatic palsy, for which permanent supportive ventilation is required. No effective treatment is available yet, but novel therapeutic approaches, such as gene therapy, have shown encouraging results in preclinical settings and thus represent possible methods for treating SMARD1. Significant advancements in the understanding of both the SMARD1 clinical spectrum and its molecular mechanisms have allowed the rapid translation of preclinical therapeutic strategies to human patients to improve the poor prognosis of this devastating disease.  相似文献   

12.
A hereditary form of spinal muscular atrophy (SMA) caused by an autosomal recessive gene has been reported for American Brown-Swiss cattle and in advanced backcrosses between American Brown-Swiss and many European brown cattle breeds. Bovine SMA (bovSMA) bears remarkable resemblance to the human SMA (SMA1). Affected homozygous calves also show progressive symmetric weakness and neurogenic atrophy of proximal muscles. The condition is characterized by severe muscle atrophy, quadriparesis, and sternal recumbency as result of neurogenic atrophy. We report on the localization of the gene causing bovSMA within a genomic interval between the microsatellite marker URB031 and the telomeric end of bovine Chromosome (Chr) 24 (BTA24). Linkage analysis of a complex pedigree of German Braunvieh cattle revealed a recombination fraction of 0.06 and a three-point lod score of 11.82. The results of linkage and haplotyping analysis enable a marker-assisted selection against bovSMA based on four microsatellite markers most telomeric on BTA24 to a moderate accuracy of 89-94%. So far, this region is not orthologous to any human chromosome segments responsible for twelve distinct disease phenotypes of autosomal neuropathies. Our results indicate the apoptosis-inhibiting protein BCL2 as the most promising positional candidate gene causing bovSMA. Our findings offer an attractive animal model for a better understanding of human forms of SMA and for a probable anti-apoptotic synergy of SMN-BCL2 aggregates in mammals.  相似文献   

13.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by degeneration of lower motor neurons. We have assayed deletions in two candidate genes, the survival motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP) genes, in 108 samples, of which 46 were from SMA patients, and 62 were from unaffected subjects. The SMA patients included 3 from Bahrain, 9 from South Africa, 2 from India, 5 from Oman, 1 from Saudi Arabia, and 26 from Kuwait. SMN gene exons 7 and 8 were deleted in all type I SMA patients. NAIP gene exons 5 and 6 were deleted in 22 of 23 type I SMA patients. SMN gene exon 7 was deleted in all type II SMA patients while exon 8 was deleted in 19 of 21 type II patients. In 1 type II SMA patient, both centromeric and telomeric copies of SMN exon 8 were deleted. NAIP gene exons 5 and 6 were deleted in only 1 type II SMA patient. In 1 of the 2 type III SMA patients, SMN gene exons 7 and 8 were deleted with no deletion in the NAIP gene, while in the second patient, deletions were detected in both SMN and NAIP genes. None of the 62 unaffected subjects had deletions in either the SMN or NAIP gene. The incidence of biallelic polymorphism in SMN gene exon 7 (BsmAI) was found to be similar (97%) to that (98%) reported in a Spanish population but was significantly different from that reported from Taiwan (0%). The incidence of a second polymorphism in SMN gene exon 8 (presence of the sequence ATGGCCT) was markedly different in our population (97%) and those reported from Spain (50%) and Taiwan (0%).  相似文献   

14.
Russian Journal of Genetics - Background. Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder with the frequency of carriers in a number of ethnical groups ranging...  相似文献   

15.
Conventional PCR methods combined with linkage analysis based on short tandem repeats(STRs) or Karyomapping with single nucleotide polymorphism(SNP) arrays, have been applied to preimplantation genetic diagnosis(PGD) for spinal muscular atrophy(SMA), an autosome recessive disorder. However, it has limitations in SMA diagnosis by Karyomapping, and these methods are unable to distinguish wildtype embryos with carriers effectively. Mutated allele revealed by sequencing with aneuploidy and linkage analyses(MARSALA) is a new method allowing embryo selection by a one-step next-generation sequencing(NGS) procedure, which has been applied in PGD for both autosome dominant and X-linked diseases in our group previously. In this study, we carried out PGD based on MARSALA for two carrier families with SMA affected children. As a result, one of the couples has given birth to a healthy baby free of mutations in SMA-causing gene. It is the first time that MARSALA was applied to PGD for SMA, and we can distinguish the embryos with heterozygous deletion(carriers) from the wild-type(normal) ones accurately through this NGS-based method. In addition, direct mutation detection allows us to identify the affected embryos(homozygous deletion), which can be regarded as probands for linkage analysis, in case that the affected family member is absent. In the future, the NGS-based MARSALA method is expected to be used in PGD for all monogenetic disorders with known pathogenic gene mutation.  相似文献   

16.
 The molecular analysis of the survival motor neuron (SMN) gene and several closely flanking polymorphic markers in an atypical pedigree with four patients suffering from spinal muscular atrophy (SMA) over two generations has raised new aspects concerning the etiology and the molecular spectrum of autosomal recessive SMA. Three patients in two generations show homozygous deletions of exons 7 and 8 of the telomeric copy of SMN (telSMN), thus confirming the presence of autosomal recessive SMA, with localisation on chromosome 5q12. The fourth SMA patient with mild neurogenic atrophy (confirmed by muscle biopsy and electromyography) shows no homozygous deletion of telSMN but carries a heterozygous deletion of telSMN, as can be deduced from her two affected homozygously deleted children. No intragenic mutation has been identified in the remaining telSMN. In addition, she shares only one SMA chromosome with her affected brother, is haploidentical with two healthy brothers, and has a 31-year-old healthy son, who has inherited an SMN-deleted paternal chromosome and the SMN non-deleted maternal chromosome. These results suggest that this patient either has a neurogenic atrophy of a different origin or exhibits an unusual heterozygous manifestation of SMA 5q12. Interestingly, the two haploidentical telSMN-deleted affected sibs in the second generation show a strikingly discordant clinical picture indicating that, in addition to telSMN mutations, other factors influence the phenotype of SMA in the reported pedigree. Received: 20 March 1997 / Accepted: 4 June 1997  相似文献   

17.
18.
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is caused by inactivating mutations in the Survival of motor neuron 1 (SMN1) gene, resulting in decreased SMN protein expression. Humans possess a paralog gene, SMN2, which contains a splicing defect in exon 7 leading to diminished expression of full-length, fully functional SMN protein. Increasing SMN2 expression has been a focus of therapeutic development for SMA. Multiple studies have reported the efficacy of histone deacetylase inhibitors (HDACi) in this regard. However, clinical trials involving HDACi have been unsatisfactory, possibly because previous efforts to identify HDACi to treat SMA have employed non-neuronal cells as the screening platform. To address this issue, we generated an SMA-patient specific, induced pluripotent stem cell (iPSC) derived neuronal cell line that contains homogenous Tuj1 + neurons. We screened a small library of cyclic tetrapeptide HDACi using this SMA neuronal platform and discovered compounds that elevate SMN2 expression by an impressive twofold or higher. These candidates are also capable of forming gems intranuclearly in SMA neurons, demonstrating biological activity. Our study identifies new potential HDACi therapeutics for SMA screened using a disease-relevant SMA neuronal cellular model.  相似文献   

19.
Bovine spinal muscular atrophy (SMA), an autosomal recessive neurodegenerative disease, has been mapped at moderate resolution to the distal part of Chromosome 24. In this article we confirm this location and fine-map the SMA locus to an interval of approximately 0.8 cM at the very distal end of BTA24. Despite remarkable similarity to human SMA, the causative gene SMN can be excluded in bovine SMA. However, the interval where the disease now has been mapped contains BCL2, like SMN an antiapoptotic factor, and shown to bind to SMN. Moreover, knockout mice lacking the BCL2 gene show rapid motor neuron degeneration with early postnatal onset, as observed in bovine SMA. A comparative cattle/human map of the distal end of BTA24, based on the emerging bovine genome sequencing data, shows conserved synteny to HSA18 with hints of a segmental duplication and pericentic inversion just after the last available bovine marker DIK4971. This synteny lets us conclude that SMA is in immediate vicinity of the telomere. Candidate gene analysis of BCL2, however, excludes most of this gene, except its promoter region, and draws attention to the neighboring gene VPS4B, part of the endosomal protein-sorting machinery ESCRT-III which is involved in several neurodegenerative diseases. Stefan Krebs and Ivica Medugorac contributed equally to this work and agreed to be considered as first authors.  相似文献   

20.
Spinal Muscular Atrophy (SMA), a recessive hereditary neurodegenerative disease in humans, has been linked to mutations in the survival motor neuron (SMN) gene. SMA patients display early onset lethality coupled with motor neuron loss and skeletal muscle atrophy. We used Drosophila, which encodes a single SMN ortholog, survival motor neuron (Smn), to model SMA, since reduction of Smn function leads to defects that mimic the SMA pathology in humans. Here we show that a normal neuromuscular junction (NMJ) structure depends on SMN expression and that SMN concentrates in the post-synaptic NMJ regions. We conducted a screen for genetic modifiers of an Smn phenotype using the Exelixis collection of transposon-induced mutations, which affects approximately 50% of the Drosophila genome. This screen resulted in the recovery of 27 modifiers, thereby expanding the genetic circuitry of Smn to include several genes not previously known to be associated with this locus. Among the identified modifiers was wishful thinking (wit), a type II BMP receptor, which was shown to alter the Smn NMJ phenotype. Further characterization of two additional members of the BMP signaling pathway, Mothers against dpp (Mad) and Daughters against dpp (Dad), also modify the Smn NMJ phenotype. The NMJ defects caused by loss of Smn function can be ameliorated by increasing BMP signals, suggesting that increased BMP activity in SMA patients may help to alleviate symptoms of the disease. These results confirm that our genetic approach is likely to identify bona fide modulators of SMN activity, especially regarding its role at the neuromuscular junction, and as a consequence, may identify putative SMA therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号