首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fluorescence spectra of the pigment system at –196°Cin membrane fragments of Anabaena variabilis and A. cylindricawere investigated. The fluorescence spectra of membrane fragments having four emissionbands at 645–655, 685, 695 and 725 nm were basically similarto those reported for intact cells of blue-green algae, thoughthe emission from phycocyanin (645–655 nm) was far strongerwith membrane fragments than with intact algal cells. Incubation of membrane fragments of A. variabilis in a dilutebuffer (10–2M, pH 7.5) caused an increase in the 645 nmfluorescence and slight decreases in the 685 and 695 nm fluorescences,but had no influence on the 725 nm fluorescence. The decreasein the 685 and 695 nm fluorescences of A. cylindrica was moremarked and had the same kinetics as the inactivation of photosystemII reaction measured by DPIP-photoreduction. When membrane fragments of A. cylindrica were incubated in thebuffer solution at room temperature or in the presence of MgCl2(10–3M) at 0°C; phycobilin aggregates, which emittedthe 655 and 685 nm fluorescence, were solubilized. This solubilizationwas not observed with membrane fragments of A. variabilis. (Received August 31, 1972; )  相似文献   

2.
Microzooplankton grazing and community structure were investigatedin the austral summer of 1995 during a Southern Ocean Drogueand Ocean Flux Study (SODOFS) at the ice-edge zone of the LazarevSea. Grazing was estimated at the surface chlorophyll maximum(5–10 m) by employing the sequential dilution technique.Chlorophyll a concentrations were dominated by chainformingmicrophytoplankton (>20 µm) of the genera Chaetocerosand Nitzschia. Microzooplankton were numerically dominated byaloricate ciliates and dinoflagellates (Protoperidinium sp.,Amphisoleta sp. and Gymnodinium sp.). Instantaneous growth ratesof nanophytoplankton (<20 µm) varied between 0.019and 0.080 day–1, equivalent to between 0.03 and 0.12 chlorophylldoublings day–1. Instantaneous grazing rates of microzooplanktonon nanophytoplankton varied from 0.012 to 0.052 day–1.This corresponds to a nanophytoplankton daily loss of between1.3 and 7.0% (mean = 3.76%) of the initial standing stock, andbetween 45 and 97% (mean = 70.37%) of the daily potential production.Growth rates of microphytoplankton (>20 µm) were lower,varying between 0.011 and 0.070 day–1, equivalent to 0.015–0.097chlorophyll doublings day–1. At only three of the 10 stationsdid grazing by microzooplankton result in a decrease in microphytoplanktonconcentration. At these stations instantaneous grazing ratesof microzooplankton on microphytoplankton ranged between 0.009and 0.015 day–1, equivalent to a daily loss of <1.56%(mean = 1.11%) of initial standing stock and <40% (mean =28.55%) of the potential production. Time series grazing experimentsconducted at 6 h intervals did not show any diel patterns ofgrazing by microzooplankton. Our data show that microzooplanktongrazing at the ice edge were not sufficient to prevent chlorophylla accumulation in regions dominated by rnicrophytoplankton.Here, the major biological routes for the uptake of carbon thereforeappear to be grazing by metazoans or the sedimentation of phytoplanktoncells. Under these conditions, the biological pump will be relativelyefficient in the drawdown of atmospheric CO2.  相似文献   

3.
The gut fluorescence technique was used to estimate ingestionand filtration rates of the adult female copepods Paracalanusparvus, Cenlropages brachiatus and Calanus austrails, and copepoditestages 3, 4 and 5 of C.australis in the southern Benguela upwellingregion. During the study period chlorophyll concentrations withinthe upper 20 m of the water column were high, 5 µg I–1in mid-shelf waters and 15–30 µg I–1 in innershelf waters. Copepod gut pigment content was low and constantduring the day then increased sharply during the first 2 h aftersunset. Gut pigment content was 2–6 times higher duringthe night compared with daytime values. Small non-migratingcopepods (Paracalanus parvus) showed the smallest diel differencein gut pigment content and large migrating copepods (Centropagesbrachiatus and Calanus australis) the largest difference. Eggproduction rates were 20 and 50% of maximum at the mid-shelfand inner shelf stations respectively, suggesting food-limitation.Comparison of ingestion rates calculated from egg productiondata with ingestion rates calculated from gut pigment data suggestedthat the copepods were feeding omnivorously at the inner shelfstations but herbivorously at the mid-shelf stations. Assumingthat all of the phytoplankton was available as food, the nearshorecopepod assemblage grazed {small tilde}1% of the standing cropeach day, and the mid-shelf assemblage grazed 5% day–1.Because of errors and uncertainties associated with the gutfluorescence technique, the feeding impact could be underestimatedby 2–4-fold. We discuss several approaches which couldlead to more precise estimates of feeding rates. 3Present address: Marine Sciences, SUNY, Stony Brook, NY, 11794-5000,USA  相似文献   

4.
Microphytoplankton and zooplankton composition and distributionin the vicinity of the Prince Edward Islands and at the Sub-antarcticFront (SAF) were investigated in late austral summer (April/May)1996. Samples were collected for analysis of chlorophyll a concentration(Chi a), microphytoplankton and zooplankton abundance. Generally,the highest Chl a concentrations (up to 2.0 µg l–1)and zooplankton densities (up to 192 ind. m–3) were recordedat stations within the inter-island area while the lowest values(<0.4 µg l–1) were observed at stations upstreamof the islands. High Chl a and zooplankton biomass values werealso associated with the SAF. Microphytoplankton were dominatedby chain-forming species of the genera Chaetoceros (mainly C.neglectus),Fragilariopsis spp. and the large diatom Dactyliosolen antarcticus.The zooplankton assemblages were always dominated by mesozooplanktonwhich at times contributed up to 98% of total zooplankton abundanceand up to 95% of total biomass. Among mesozooplankton, copepods,mainly Clausocalanus brevipes and Metridia lucens numericallydominated. Among the macrozooplankton euphausiids, mainly Euphausiavallentini, E.longirostis and Stylocheiron maximum, and chaetognaths(Sagitta gazellae) accounted for the bulk of abundance and biomass.Cluster and ordination analysis did not identify any distinctbiogeographic regions among either the microphytoplankton orzooplankton.  相似文献   

5.
We report that growth of Dunaliella salina at either 13°C/150µmol m–2s–1 or 30°C/2,500 µmol m–2s–1 results in the accumulation of comparable levels ofcarotenoids and the zeaxanthin-binding protein, Cbr. We concludethat carotenoid and Cbr abundance in this green alga respondto changes in PSII ‘excitation pressure’ ratherthan to high light per se. (Received September 19, 1996; Accepted November 20, 1996)  相似文献   

6.
The effects of phthalate esters on chlorophyll a2 fluorescencein radish plants (Raphanus sativus L. cv. Cherry Belle) wereexamined Fluorescence yield was increased in those plants exposedto an aerial concentration of 120 ng dm–3 dibutyl phthaiatc(DBP) at a rate of 3.0 dm3 min–1 for 13 d. Comparisonof fluorescence enhancement ratios and Fred/Fox, suggests thatDBP inhibits photosynthesis in radish plants at a site afterQA. Both DBP and diisobutyl phthalate (DIBP) strongly inhibiteduncoupled (PS2+PS1) electron transport rates in thylakoids isolatedfrom spinach. At a chlorophyll concentration of 10 µgcm–3 the concentrations of DBP and DIBP exhibiting 50%inhibition were 44 mmol m–3 and 42 mmol m–3 respectively.Basal electron transport rates were also inhibited, with 87mmol m–3 of DBP or DIBP producing 50% inhibition. Measurementof photosystcm 1 activity suggested that the main site of actionof these phthalates was localized at a site near the reducingside of photosystem 2. Key words: Phthalate, plasticiser, chlorophyll, fluorescence, photosynthesis, inhibition  相似文献   

7.
The dynamics of the phytoplankton community were investigatedin a marine coastal lagoon (Thau, NW Mediterranean) from February1999 to January 2000. Dilution experiments, chlorophyll a (Chla) size-fractionation and primary production measurements wereconducted monthly. Maximum growth and microzooplankton grazingrates were estimated from Chl a biomass fractions to separatepico- from nano- and microphytoplankton and by flow cytometryto distinguish between picoeukaryotes and picocyanobacteria.In spring, the phytoplankton community was dominated by Chaetocerossp. and Skeletonema costatum, which represented most of biomass(B) and primary production (P). Nano- and microphytoplanktongrowth was controlled by nutrient availability and exceededlosses due to microzooplankton grazing (g). Picoeukaryote andcyanobacteria growth was positively correlated with water temperatureand/or irradiance, reaching maximum values in the summer (2.38and 1.44 day–1 for picoeukaryotes and cyanobacteria, respectively).Picophytoplankton accounted for 57% of the biomass-specificprimary productivity (P/B). Picophytoplankton was strongly controlledby protist grazers (g = 0.09–1.66 day–1 for picoeukaryotes,g = 0.25–1.17 day–1 for cyanobacteria), and microzooplanktonconsumption removed 71% of the daily picoplanktonic growth.Picoeukaryotes, which numerically dominate the picoplanktoncommunity, are an important source of organic carbon for theprotistan community and contribute to the carbon flow to highertrophic levels.  相似文献   

8.
Quercus coccifera L. and Q. ilex L. leaves, collected in winter,when the plants were in full turgor, were treated with polyethyleneglycol (PEG) with a water potential of –48 and –65bar, at 15 °C and at 30 °C, for 2 days. The responseof each species differs with temperature as far as the plastidpigment, anthocyanin and soluble sugar content is concerned.Thus Q. ilex is affected more at 15 °C rather than at 30°C, while in Q. coccifera, apart from a small increase inanthocyanins, no significant change was observed at 15 °C.On the contrary, at 30 °C significant changes were observedin all studied parameters. Chloroplast pigments decreased generallyon the first day and their content either dropped further orincreased to reach the control values on the second day. Alltreatments resulted in an increase in anthocyanin content. Solublesugar content raised in Q. ilex at 15 °C and decreased inboth species at 30 °C. Quercus coccifera, Quercus ilex, oak, temperature, water stress, anthocyanin, chlorophyll, carotenoids  相似文献   

9.
The light-harvesting system of photosynthesis was studied infour strains of Porphyra yezoensis differing in their phycoerythrin(PE) content; the red strain, richer in PE than the wild strain,and the green and the yellow strains, poorer in PE. Specialattention was given to possible alteration of pigment systemin response to PE content, especially in the green and the yellowstrains. The relative quantum yields of Chi a fluorescence at–196°C and O2 evolution were compared. Four strains commonly showed a low yield in pigment system II(PS II) fluorescence on Chl a excitation. The yield was as lowas in those algae in which PS II has only a small portion ofChl a as the light harvester. Measurement of O2 evolution gavethe same results. Results indicate that the functional compositionof Chl a system remains unaltered in four strains with differentPE content. PS II in the green and the yellow strains reflectsa reduction in the size of light-harvesting components, suggestingthat pigmentation in these strains is fixed genetically as asun-type. 4 On leave from University of Washington, Seatle, Washington,U.S.A. (Received September 18, 1982; Accepted December 25, 1982)  相似文献   

10.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

11.
The effect of low temperatures on the fatty acid compositionof phosphatidylglycerol (PG) in thylakoid membranes, in particularon the ratios of nmol% 16:1(3t) (mg fresh weight)–1 ofcotyledons and nmol 16:1(3t) (mg chlo rophyll)–1 weremeasured during squash seedling growth. Plants were germinatedand grown for one day at 30°C then were either kept at 30°C(control plants) or trans ferred to low temperatures (18, 14or 10°C). When plant were transferred from 30°C to lowtemperatures, the increase in fresh weight was gradually limited.The lowe the temperature, the smaller was the fresh weight.In contrast, the relative content of 16:1(3t) and 18:3, as wella the ratios of nmol 16:1(3t) (mg chlorophyll)–1 and mol%16:1(3t) (mg cotyledon fresh weight)–1 increased indicatingthat the increase of fresh weight and chlorophyll was mor sensitiveto low temperature than PG desaturation in thyla-koid membranes.Furthermore, low temperatures inducei an increase in 16:1(3t)and 18:3 (the final products of PC synthesis) at the expenseof 16:0 and 18:1 (the initial products of PG synthesis). However,within a range of temperature from 10 to 18°C, the extentof these changes (nmol% of 18:3 or 16:1(3t) per day) was graduallylimited by lower temperatures. We therefore propose that lowtemperature inhibit both fatty acid synthesis and desaturationactivities. However, at low temperatures the fatty acid synthesisis likely to be more strongly inhibited than the desaturationactivities, thus explaining the observed increase in the relativecontent of PG-18:3 and PG-16:l(3t). Results an discussed interms of the mechanism which could be in volved in the metabolismof PG in squash cotyledons. (Received July 5, 1996; Accepted March 10, 1997)  相似文献   

12.
When young tomato plants grown in high light (400 µmolquanta m–2s–1 PAR) were transferred to low light(100 µmol quanta m–2s–1 PAR), non-cyclic electrontransport capacity was decreased and the rate of dark re-oxidationof Q, the first quinone electron acceptor of photosystemII, was decreased within 1–2 d. In contrast, the amountof coupling factor CF1, assayed by its ATPase activity, decreasedmore gradually over several days. The total chlorophyll contentper unit leaf area remained relatively constant, although thechlorophyll a/chlorophyll b ratio declined. When young tomato plants grown in low light were transferredto high light, the ATPase activity of isolated thylakoids increasedmarkedly within 1 d of transfer. This increase occurred morerapidly than changes in chlorophyll content per leaf area. Inaddition, in vivo chlorophyll fluorescence induction curvesindicate that forward electron transfer from Q occurredmore readily. The functional implications of these changes arediscussed. Key words: Tomato, leaves, light intensity, thylakoid membrane  相似文献   

13.
The pigment changes that occur during transformation of etioplaststo fully developed chloroplasts have been studied in seedlingsof barley (Hordeum vulgare L.) by greening with white lightof low (15–25 µmol m–2 s–1) and medium(150 µmol m–2 s–1) intensity. At least 24h longer was required in the low light regime for the same concentrationof pigment to be accumulated in the seedlings. The increasein pigment content was mainly due to the synthesis of chlorophyllsa and b. Of the carotenoids present, the increases in the levelsof neoxanthin and, especially, ß-carotene were muchgreater than those observed for the other carotenoids. Levelsof lutein also increased but this change was small by comparisonto those observed for neoxanthin and ß-carotene. Inthe long-term the concentration of violaxanthin remained unalteredalthough significant transient changes were recorded. The levelsof antheraxanthin and zeaxanthin were markedly reduced duringgreening. The rate of pigment synthesis decreased with increasingcell age, i.e. from the base to the tip of the primary leaf.Overall, carotenoid levels increased by approximately 100% atthe base of the seedling but hardly at all at the tip. Key words: Hordeum vulgare, carotenoids, violaxanthin-cycle, etiolation  相似文献   

14.
The seasonal variability of phytoplankton in the EquatorialAtlantic was analysed using Sea-viewing Wide Field-of-view Sensor(SeaWiFS)-derived chlorophyll a (Chl a) concentration data from1998 to 2001, together with in situ Chl a and primary productiondata obtained during seven cruises carried out between 1995and 2000. Monthly averaged SeaWiFS Chl a distributions werein agreement with previous observations in the Equatorial Atlantic,showing marked differences between 10° W in the EasternTropical Atlantic (ETRA) and 25° W in the Western TropicalAtlantic (WTRA) provinces (Longhurst et al. 1995. J. PlanktonRes., 17, 1245–1271). The seasonal cycle of SeaWiFS-derivedChl a concentration calculated for 0–10° S, 0–20°W (ETRA) is consistent with in situ Chl a measurements, withvalues ranging from 0.16 mg m–3, from February to April,to 0.52 mg m–3 in August. Lower variability was observedin 10° N–10° S, 20–30° W (WTRA) whereminimum and maximum concentrations occurred in April (0.15 mgm–3) and in August (0.24 mg m–3), respectively.A significant empirical relationship between depth-integratedprimary production and in situ measured sea surface Chl a wasfound for ETRA, allowing us to estimate the seasonal cycle ofdepth-integrated primary production from SeaWiFS-derived Chla. As for Chl a, this model was verified in a small area ofthe Eastern Equatorial Atlantic (0–10° S, 0–20°W), although in this instance it was not completely able todescribe the magnitude and temporal variability of in situ primaryproduction measurements. The annual euphotic depth-integratedprimary production rate estimated for ETRA by our empiricalmodel was 1.4 Gt C year–1, which represents 16% of theopen ocean primary production estimated for the whole AtlanticOcean.  相似文献   

15.
The effects of UV radiation on the low temperature fluorescenceand primary photochemistry of PSII and PSI of spinach chloroplastswere studied. Fluorescence induction curves at –196°Cwere measured at 695 nm for PSII fluorescence and at 730 nmfor PSI fluorescence to determine both the initial Fo and finalFM levels. The primary photochemistry of PSII was measured asthe rate of photoreduction of C-550 at – 196°C, thatof PSI as the rate of photooxidation of P700 at –196°C.The results were analyzed in terms of a model for the photosyntheticapparatus which accounts for the yields of fluorescence andprimary photochemistry. According to this analysis UV radiationincreases nonradiative decay processes at the reaction centerchlorophyll of PSII. However, the effect of UV radiation isnot uniform throughout the sample during irradiation so thataccount must be taken of the fraction of PSII reaction centerswhich have been irradiated at any given time. UV radiation alsoinactivates P700 and causes a slight increase in nonradiativedecay in the antenna chlorophyll of PSI. All fluorescence ofvariable yield, FV = FM–Fo, at 730 nm is due to energytransfer from PSII to PSI so that the sensitivity of Fv to UVradiation is the same at 730 and 695 nm. 1Present address: Department of Biology, Faculty of Science,Toho University, Narashino, Chiba 275, Japan. 2Present address: Central Research Laboratories, Fuji PhotoFilm Co., Ltd., 105 Mizonuma, Asaka-Shi, Saitama 351, Japan. (Received September 10, 1975; )  相似文献   

16.
In situ growth and development of Neocalanus flemingeri/plumchrusstage C1–C4 copepodites were estimated by both the artificial-cohortand the single-stage incubation methods in March, April andMay of 2001–2005 at 5–6°C. Results from thesetwo methods were comparable and consistent. In the field, C1–C4stage durations ranged from 7 to >100 days, dependent ontemperature and chlorophyll a (Chl a) concentration. Averagestage durations were 12.4–14.1 days, yielding an averageof 56 days to reach C5, but under optimal conditions stage durationswere closer to 10 days, shortening the time to reach C5 (fromC1) to 46 days. Generally, growth rates decreased with increasingstage, ranging from 0.28 day–1 to close to zero but weretypically between 0.20 and 0.05 day–1, averaging 0.110± 0.006 day–1 (mean ± SE) for single-stageand 0.107 ± 0.005 day–1 (mean ± SE) forartificial-cohort methods. Growth was well described by equationsof Michaelis–Menten form, with maximum growth rates (Gmax)of 0.17–0.18 day–1 and half saturation Chl a concentrations(Kchl) of 0.45–0.46 mg m–3 for combined C1–3,while Gmax dropped to 0.08–0.09 day–1 but Kchl remainedat 0.38–0.93 mg m–3 for C4. In this study, in situgrowth of N. flemingeri/plumchrus was frequently food limitedto some degree, particularly during March. A comparison withglobal models of copepod growth rates suggests that these modelsstill require considerable refinement. We suggest that the artificial-cohortmethod is the most practical approach to generating the multispeciesdata required to address these deficiencies.  相似文献   

17.
Data consisting of high resolution profiles of in situ chlorophyll,copepods and primary production have been measured with a towedBatfish and profiling pumping system at two sites named ‘BIOSTAT’(9°45'N, 93°45'W) and ‘DOME’ (7°19'N,83°25'W) sites during March 1981. Primary production profileswere generated from Batfish profiles using a chlorophyll/lightmodel and incubated pump samples, the latter with high verticalresolution of 3–5 m. The BIOSTAT site had a subsurfacechlorophyll maximum situated at {small tilde}50 m, and a productionmaximum at a depth of 40 m Copepods had a mean depth centroidcorresponding to the production maximum although their distributionwas more uniformly dispersed from 0 to 40 m. The latter observationindicated that copepods occurred at depths of high productionpotential and low biomass rather than high total productionand high biomass as found at 40 m depth. The DOME site had amixed surface layer of chlorophyll (0–20 m) while copepodswere located at the base of the chlorophyll layer and primaryproduction maximum located at the surface (0–10 m). Theareal daily production measured at the BIOSTAT and DOME siteswere 0.27 and 0.80 mg C m–2day–1 respectively.  相似文献   

18.
Main emissions at—196?C from phycobilisomes of two blue-greenalgae Anabaena cylindrica and Anacystis nidulans were studiedwith special reference to allophycocyanin (APC) B content. Supplementaryexperiments were done with Anabaena variabilis (M-2 and M-3).The main emission from phycobilisome of Anacystis nidulans richin APC B was located at 681 nm. The location was identical tothat of the main emission from APC B but at a shorter wavelengththan that of in vivo emission (685 nm). Results indicate thatAPC B acts as the energy output of phycobilisomes, but thatthe in vivo 685 nm emission is not attributed to APC B. The main emission of the phycobilisome of Anabaena cylindricawas always located at 685 nm irrespective of the preparationmethod; 0.75 M phosphate buffer [Plant Physiol., 63: 615–620(1979)] or 30% polyethylene glycol [Special Issue of Plant &Cell Physiol., No. 3, p. 23–31 (1977)]. This alga alsocontained a special form of APC, but its content was very low.The location of its emission band (681 nm) was identical tothat of APC B, but shorter than that of the main band of phycobilisomes(685 nm). The 685 nm emitter in phycobilisomes showed a charactersimilar to chlorophyll a but not phycobiliproteins in treatmentsfor aqueous extraction or methanol extraction. Results indicatethat the pigment is probably chlorophyll a as we assumed previously.The 685 nm emission from phycobilisomes of Anabaena variabilis(M-2 and M-3) showed the same character. Results were interpreted as indicating that (i) the contentof the special form of APC varies with the species or strainof blue-green algae and (ii) the energy at the phycobilin levelis transferred directly from APC to pigment system II chlorophylla when the amount of the special form of APC is low. (Received October 24, 1979; )  相似文献   

19.
The photosynthetic responses of eight tree and shrub speciesto simulated sunflecks was measured in the field. The net carbonexchange (NCE) of Corylus avellana and Ulmus glabra increasedwith irradiance up to the maximum irradiance of 230 µmolm–2 s–1. The NCE of Fraxinux excelsior, Hedera helixand the sun and shade forms of Rhododendron ponticum saturatedat about 120 µmol m–2 s–1 whereas the NCEof Ilex aquifolium, Daphne laureola and Fagus sylvatica hadeffectively saturated at 27 µmol m–2 s–1. In all cases the quantum efficiency of NCE could be predictedfrom measurements of chlorophyll fluorescence and the maximumvalue for NCE from measurements of stomatal conductance. Therelationships were combined into a model for predicting NCE/irradiancecharacteristics. Corylus avellana L., Daphne laureola L., Fagus sylvatica L., Fraxinus excelsior L., Hedera helix L., Ilex aquifolium L., Prunus laurocerasus L., Rhododendron ponticum L., Ulmus glabra Huds., gas exchange, stomatal resistance, water use efficiency, chlorophyll fluorescence, quantum efficiency  相似文献   

20.
The present study deals with structure and functioning of threeareas of Himalayan oak forest. Low- and mid-altitude oaks, namelyQuercus leucotrichophora, and Quercus floribunda, form predominantevergreen forests in Central and Western Himalaya. The totaltree basal cover ranged between 33·89 m2 ha–1 (Q.floribunda site) to 36·83 m2 ha–1 (Q. leucotrichophorasite). The density ranged between 570 and 760 individuals ha–1.Allometric equations relating biomass of different tree componentsto GBH (girth at breast height) were significant with the exceptionof leaf biomass in Q. leucotrichophora and Rhododendron arboreum.Total vegetation biomass (29·40–467·0 tha–1) was distributed as 377·1 t ha–1 intrees, 5·40 t ha–1 in shrubs and 1·23 tha–1 in herbs. Total forest floor biomass ranged between4·6 and 6·2 t ha–1. Of the total annuallitter fall (4·7–4·8 t ha–1), 77·5% was contributed by leaf litter, 17·8 % by wood litterand 4·7 % by miscellaneous litter. Turnover rate of treelitter varied from 0·66 to 0·70. Net primary productionof total vegetation ranged between 15·9 and 20·6t ha–1 yr–1, of which the contribution of trees,shrubs and herbs was 81·2 %, 8·6 % and 10·2%, respectively. A compartment model of dry matter on the basisof mean data across sites was developed to show dry matter storageand flow of dry matter within the system. Quercus leucotrichophora forest, Q. floribunda forest, Q. lanuginosa forest, biomass, litter fall, net primary production, compartmental transfer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号