首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Generation of negative air ions (NAI) by pot plants (aloe Aloe arborescens, haworthia Haworthia rasalata, echinopsis Echinopsis tubiflora, mammillaria Mammillaria prolifera, opuntia Opuntia brunnescens, spider plant Chlorophytum comosum, and jade plant Crassula portulacea) was studied when high-voltage pulses were applied to soil. Plants that generated low amounts of NAI (such as jade plant and echinopsis) elevated NAI level 2–3 times over the mean background level. Plants that produced moderate amounts of NAI (haworthia, opuntia, and mammillaria) increased the NAI level hundredfold, whereas highly active plants (aloe and spider plant) increased the NAI level thousand times. Aloe plants can maintain constant NAI concentration in the ambient air (125 ± 15 × 103 ions/cm3) for a long time (7–8 h). Negative air ions were predominantly generated by the leaf tips. The capacity of aloe to produce NAI considerably reduced with plant age and was lost, although reversibly, at temperatures below 8.5°C. The rate of NAI generation considerably depended on weather conditions. It was demonstrated that superoxide anion radical is one of NAI species generated by plants.  相似文献   

2.
Summary Shoot organogenesis of Guazuma crinita Mart. from root and petiole explants was obtained via adventitious bud formation. Root segments and petiole explants excised from in vitro generated plantlets were cultured on woody plant medium (WPM) supplemented with [trans-6-(4-hydroxy-3-methylbut-2- enyl)aminopurine] (zeatin) or with [6-benzyladenine] (BA). After 45 d of culturing, clumps of green bulbous structures containing small adventitious buds (clusters) were generated in all explants cultured with 10 μM zeatin under a photon flux density of 65 μmol m−2 s−1. For subsequent shoot differentiation, clusters were transferred onto medium containing 1 μM zeatin. After 60 d of culturing, 30% of clusters generated from petiole explants developed into plants. The regenerated plantlets were successfully acclimatized and all survived and grew well. No morphological abnormalities were observed.  相似文献   

3.
Studies in several plants have shown that Agrobacterium tumefaciens T-DNA can integrate into plant chromosomal DNA by different mechanisms involving single-stranded (ss) or double-stranded (ds) forms. One mechanism requires sequence homology between plant target and ssT-DNA border sequences and another double-strand-break repair in which preexisting chromosomal DSBs “capture” dsT-DNAs. To learn more about T-DNA integration in Solanum lycopersicum we characterised 98 T-DNA/plant DNA junction sequences and show that T-DNA left border (LB) and right border transfer is much more variable than previously reported in Arabidopsis thaliana and Populus tremula. The analysis of seven plant target sequences showed that regions of homology between the T-DNA LB and plant chromosomal DNA plays an important role in T-DNA integration. One T-DNA insertion generated a target sequence duplication that resulted from nucleolytic processing of a LB/plant DNA heteroduplex that generated a DSB in plant chromosomal DNA. One broken end contained a captured T-DNA that served as a template for DNA repair synthesis. We propose that most T-DNA integrations in tomato require sequence homology between the ssT-DNA LB and plant target DNA which results in the generation of DSBs in plant chromosomal DNA.  相似文献   

4.
The fungus Peronospora parasitica (Pers. ex Fr.) Fr. is an obligate biotroph infecting a wide range of host species in the family Cruciferae. Isolates from different hosts are morphologically similar, and pathotypes are usually distinguished on the basis of host range. Random Amplified Polymorphic DNA (RAPD) fingerprints were generated from a range of P. parasitica isolates from different Brassica species. Reaction conditions, in particular DNA template, primer and Mg2+ concentrations, were optimized to ensure that amplifications were reproducible. Possible artefacts arising through host plant DNA were assessed by including such DNA in control reactions. Confirmation that diagnostic RAPD bands were generated from fungal DNA was also obtained by Southern hybridization of a RAPD band to genomic fungal DNA. By screening 20 decamer primers, 2 were found to detect sufficient genetic variation to allow complete differentiation between pathotypes. These results illustrate the potential value of RAPDs for detecting polymorphisms between isolates of a non-culturable plant pathogenic fungus.  相似文献   

5.
  • 1 A dataset generated from previous experiments on greenbug Schizaphis graminum (Rondani) (Hemiptera: Aphididae) response to irrigation and plant density in grain sorghum was reanalyzed using a recently‐developed mechanistic ecological model for describing aphid population density curves. The model was used to estimate seven response variables: observed peak aphid abundance, predicted peak aphid abundance, time of peak abundance, per capita birthrate, death rate coefficient, final cumulative density and duration of substantial aphid infestation across three irrigation regimes and five plant densities.
  • 2 Using regression, the observed peak aphid abundance, predicted peak aphid abundance, per capita birthrate and final cumulative abundance were shown to decrease significantly, whereas the death rate coefficient and duration of the infestation were shown to increase significantly for each 100 000 plant/ha increase.
  • 3 Although significant results were found for a number of variables generated from the specific data set used in the analyses, of perhaps greater importance is the potential use of these equations in future predictions of aphid population dynamics. An example of projecting population curves based on estimated peak and cumulative counts and an example of projecting population curves based on estimated birth and death rate coefficients are provided.
  相似文献   

6.
The use of RAPD markers for the detection of gene introgression in potato   总被引:1,自引:0,他引:1  
Randomly Amplified Polymorphic DNAs were employed to demonstrate that potato dihaploids generated after interspecific pollination of a tetraploid Solanum tuberosum cultivar (Pentland Crown) by Solanum phureja dihaploid inducer clones could not be of parthenogenetic origin. Of six different 10-mer oligonucleotides, four generated products from total potato dihaploid genomic DNAs which were not derived from the S. tuberosum parent. Gel electrophoresis and Southern analysis indicated that these amplified bands originated from S. phureja. The results are discussed in the context of recent cytological and molecular evidence which demonstrates that potato dihaploids are aneusomatic (Clulow et al. 1991) and emphasises this approach as a general methodology for the detection of alien gene introgression in both natural and cultivated plant populations.  相似文献   

7.
Yan H  Zhong X  Jiang S  Zhai C  Ma L 《Biotechnology letters》2011,33(8):1683-1688
Artificial microRNA (amiRNA) technology is a novel tool in reverse genetic research for discovering or validating gene functions in plants. A convenient cloning strategy has been developed to construct plant amiRNA vectors based on lacO reconstruction and mating-assisted, genetically-integrated cloning (MAGIC). The amiRNA precursor fragment was generated by PCR and inserted into a small donor plasmid through reconstruction of integrated lacO sequence. Blue recombinants were selected on plates containing X-gal and the efficiency of successful clones was 100%. The amiRNA expression cassette was transferred from the donor plasmid to the recipient plasmid p1301-gfp through MAGIC and an amiRNA expression plasmid was created. More than 40 plant amiRNA vectors were generated through this method, one of which was transformed into Arabidopsis thaliana and the target gene was silenced efficiently. The approach will be useful for amiRNA expression vectors construction in plants.  相似文献   

8.
Waste dumps generated by mining activities contain heavy metals that are dispersed into areas leading to significant environmental contamination. The objectives of this study were (i) to survey native plants and their associated AM fungal communities from waste soils in a Moroccan mine site and (ii) to follow Eucalyptus growth in soil collected from the waste-mine. AM spores from native plant species were collected from the mining site and the surrounding uncontaminated areas were multiplied and inoculated onto Eucalyptus camaldulensis. The results showed that (i) the native plant species recorded in the waste did not show an active metal uptake, (ii) the selected native plant species are associated with AM mycorrhizal fungi and (iii) the use of AM fungi adapted to these drastic conditions can improve the growth of the fast-growing tree, E. camaldulensis and its tolerance to high soil Cu content. In conclusion, it is suggested that in order to define efficient low-cost phytostabilization processes, the use of native resources (i.e., mixtures of native mycorrhizal fungi) in combination with fast-growing tree species such as Eucalyptus, could be used to optimize the establishment of a permanent cover plant in contaminated areas.  相似文献   

9.
Genomic fingerprints of C. michiganensis subsp. sepedonicus were generated by CHEF gel electrophoresis of restriction digested high-molecular weight DNA. Low levels of intra-subspecific variation were detected by cluster analysis of the fingerprints. Four haplotypes were identified by genomic fingerprinting with HindIII, and eight were identified with EcoRI. Haplotypes generated with HindIII were less similar than those generated by EcoRI. Haplotypes generated with HindIII formed groups that corresponded well with plant reactions of the strains, but similar types of groupings were less apparent with haplotypes generated with EcoRI. When disease severity in eggplant and potato, population size in potato, and ability to induce a hypersensitive response (HR) in tobacco were overlaid onto dendograms of genetic similarity, avirulent HR-negative strains clustered separately from virulent HR-positive strains in both EcoRI and HindIII profiles. Avirulent HR-positive strains that lack pCS1 clustered with avirulent HR-negative strains in a EcoRI dendogram, but clustered with virulent HR-positive strains in a HindIII dendogram. Genomic fingerprinting of high-molecular weight DNA fragments provided a means for detecting genomic variability associated with virulence in C. michiganensis subsp. sepedonicus. Received: 1 March 2001 / Accepted: 7 June 2001  相似文献   

10.
Phytocystatins are plant cysteine proteinase inhibitors that regulate endogenous and heterologous cysteine proteinases of the papain family. A cDNA encoding the phytocystatin BrCYS1 (Brassica rapa cysteine proteinase inhibitor 1 ) has been isolated from Chinese cabbage (B. rapa subsp.pekinensis) flower buds. In order to explore the role of this inhibitory enzyme, tobacco plants (Nicotiana tabacum L. cv. Samson) containing altered amounts of phytocystatin were generated by over-expressingBrCYS1 cDNA in either the sense or the antisense configuration. The resulting plants hadin vitro enzyme inhibitory activities that were over 10% of those detected in wild type plants. The transgenic plants exhibited retarded seed germination and seedling growth and a reduced seed yield, whereas these properties were enhanced in antisense plants. These data suggest that BrCYS1 participates in the control of seed germination, post-germination and plant growth by regulating cysteine peptidase activity.  相似文献   

11.
Eleven eremophilanolides, 1 – 3 and 6 – 13 , and two eremophilanes, 24 and 25 , were isolated from Senecio candidans and S. magellanicus from the Magallanes Region (Chile). Compounds 2, 3, 9 , and 10 have not been previously reported as natural products. Their structures were established by NMR spectroscopic analysis and chemical transformations. The X‐ray analysis of compounds 11, 13 , and 17 were also performed. Different semisynthetic analogs from eremophilanolide 11 were generated to carry out a structure? activity relationship study. Their possible plant defensive role was tested against herbivorous insects (Spodoptera littoralis, Rhopalosiphum padi, and Myzus persicae) and plants (Lactuca sativa). Additionally, their effects on insect (Sf9) and mammalian (CHO) cell lines were tested.  相似文献   

12.
Summary A self-incompatible canola-quality Brassica napus ssp. oleifera line (W1) was generated by introgressing the S-locus from a self-incompatible B. campestris plant into the Westar cultivar. Using the polymerase chain reaction (PCR) with primers derived from conserved regions in S-locus glycoprotein (SLG) alleles, the central region of the active SLG gene (910) was obtained. The remaining portions of the cDNA for this 910 gene were subsequently cloned using the PCR-rapid amplification of cDNA ends (RACE) procedure. Sequence analysis revealed that the 910 cDNA show a high degree of sequence similarity to SLG alleles associated with Class I self-incompatible lines. The 910 gene was found to be absent in the original self-compatible cv. Westar (B. napus) and segregated with self-incompatibility in a mixed population generated from a cross between self-incompatible W1 and self-compatible Westar. RNA blot analysis indicated that high levels of 910 mRNAs were present in the stigma as buds approached anthesis. Thus, the SLG allele of W1 transferred from B. campestris via backcrosses to a line of cv. Westar has been identified.  相似文献   

13.
Wallace's Riverine Barrier hypothesis is one of the earliest biogeographic explanations for Amazon speciation, but it has rarely been tested in plants. In this study, we used three woody Amazonian plant species to evaluate Wallace's Hypothesis using tools of landscape genomics. We generated unlinked single‐nucleotide polymorphism (SNP) data from the nuclear genomes of 234 individuals (78 for each plant species) across 13 sampling sites along the Rio Branco, Brazil, for Amphirrhox longifolia (8,075 SNPs), Psychotria lupulina (9,501 SNPs) and Passiflora spinosa (14,536 SNPs). Although significantly different migration rates were estimated between species, the population structure data do not support the hypothesis that the Rio Branco—an allopatric barrier for primates and birds—is a significant genetic barrier for Amphirrhox longifolia, Passiflora spinosa or Psychotria lupulina. Overall, we demonstrated that medium‐sized rivers in the Amazon Basin, such as the Rio Branco, are permeable barriers to gene flow for animal‐dispersed and animal‐pollinated plant species.  相似文献   

14.
Polygalacturonase (PG) activity found in the salivary gland apparatus of the western tarnished plant bug (WTPB, Lygus hesperus Knight) has been thought to be the main chemical cause of the damage inflicted by this mirid when feeding on its plant hosts. Early viscosity and thermal stability studies of the PG activity in L. hesperus protein extracts were difficult to interpret. Thus, it has been suggested that one or more PG protein(s) with different hydrolytic modes of action are produced by this mirid. In order to understand the quantitative complexity of the WTPB salivary PG activity, PG purification from a protein extract from salivary glands excised from L. hesperus insects was performed using affinity and ion exchange chromatography. To elucidate the qualitative complexity of the purified PGs, the digestion products generated by the PGs were separated using high performance anion exchange chromatography with pulsed amperometric detection. At least five PG proteins were detected; these differing in terms of their glycosylation, mass-to-charge ratios, and/or molecular mass. The characterization of the products generated by these PGs showed that endo- and exo-acting PGs are produced by WTPB. Although none of the PGs was purified to homogeneity, the present work provides biochemical evidence of a multiplicity of PGs that degrade the pectin component of the plant tissue in different fashions. The implications of these findings affect the understanding of WTPB feeding damage and, potentially, help identify ways to control this important crop pest. Arch. Insect Biochem. Physiol. 2008. © 2008 Wiley-Liss, Inc.  相似文献   

15.
Abstract

Identifying germplasm is an important component for efficient and effective management of plant genetic resources. This investigation was undertaken for the identification and analysis of genetic variation within 9 species of Albizzia through 33 morphological parameters, and 15 Random Amplified Polymorphic DNA (RAPD) and 17 Inter Simple Sequence Repeat (ISSR) primers. The use of selected RAPD and ISSR primers generated a total of 163 and 201 amplified DNA fragments, respectively. High frequencies of polymorphism, 95.05% for RAPD and 96.02% for ISSR, were detected. Statistical approaches were employed to construct genetic relationships by RAPD, ISSR and morphological analysis. Cluster analysis by the unweighted pair-group method (UPGMA) of Nei's similarity generated dendograms with similar topology that gave a better reflection of the diversity and affinities between species. These molecular results were comparable to main morphological characteristics. The correlation matrices generated by RAPD and ISSR markers were highly correlated (r = 0.843 at p = 1.0), thereby indicating congruence between these two marker systems. Both morphometric data and molecular markers have the potential to analyse genetic variation among the nine species of Albizzia, thus providing a major input for management strategy of plant genetic resources.  相似文献   

16.
Plants are endangered at their roots by soil-dwelling rhizophagous insects. These below-ground living herbivores may orient to the source of carbon dioxide (CO2), an ubiquitous volatile released by respiring plant roots. Here, we studied the interaction of CO2 and other plant root-derived chemical stimuli with regard to the chemical orientation of the polyphagous larvae of Melolontha melolontha L. (Scarabaeidae). A soil arena was developed that enabled both determination of the actual soil CO2 concentration and the behavioural response of an insect to (a) CO2 gradients per se, (b) chemical stimuli released from respiring, undamaged roots of plants potted into vermiculite in this arena and (c) combinations of CO2 gradients and root-derived stimuli. In a root-free arena, larvae of M. melolontha oriented to the source of synthetic CO2. However, similar CO2 gradients generated by host plant roots did not attract the larvae. Neither did a synthetic CO2 gradient combined with aqueous extracts from rhizospheres with undamaged plant roots elicit an attractive effect. Our data suggest that orientation of cockchafer larvae within CO2 gradients generated by respiring roots is ‘masked’ by an aqueous extract from a rhizosphere with undamaged roots. The results emphasise that effects of behaviour modifying plant-derived compounds need to be investigated against the background of naturally co-occurring chemicals. The significance of our results for orientation of soil living insects is discussed with respect to abiotic conditions in natural soil and the role of soil microorganisms for the attractiveness of plant roots.  相似文献   

17.
Summary Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.  相似文献   

18.

Wastewater generated from industries contains numerous contaminants, among which heavy metals (HMs) are non-degradable. This research work highlights the use of commonly used ornamental plants, Nicotiana alata L. and Petunia hydrida L., with compost (C) and peat moss (M), and rhizospheric bacterial augmentation using Pseudomonas japonica, for the phytostabilization of HMs from synthetic wastewater. After plant–soil acclimatization, plants were exposed for 6 weeks to synthetic wastewater, containing cadmium, chromium, copper, lead, nickel, and zinc concentrations (based on the HMs level of wastewaters collected from textile and pharmaceutical industry). Physiological response, biochemical status, and enzymatic fluctuations of plants and the distribution of HMs in plant parts and soil, were quantified. With the combined use (5% each v/v conditioner/soil) of C and M, in bio-augmented soil, physiological response and enzymatic status of both plants improved, with decreased stress injury due to HMs. Further, the plant HMs uptake was reduced, with better stabilization of HM in soil. For better phytostabilization of HMs in wastewater, the use of compost, peat moss, and bacterial augmentation is recommended with Nicotiana alata L. and Petunia hydrida L.

  相似文献   

19.
基于无人机SfM数据的挺水植物生物量反演   总被引:1,自引:0,他引:1  
井然  宫兆宁  赵文吉  邓磊  阿多  孙伟东 《生态学报》2017,37(22):7698-7709
生物量是衡量挺水植物生长状况的重要参数,对湿地生态系统健康评价具有重要意义。利用无人机影像生成运动重建结构Sf M(Structure from Motion,Sf M)数据,结合野外实测生物量构建定量反演模型,并根据反演模型对生物量进行空间制图,最后分析了挺水植物类型对生物量空间分布的影响。结果表明,文中基于Sf M数据建立的逐步线性回归模型(Stepwise Linear(SWL)regression model)具有较好的反演精度及估测能力。其模型显著性为显著(P0.01),决定系数为0.86,相对均方根误差为6.1%。挺水植物类型对生物量空间分布影响显著(P0.05)。通过对研究区挺水植物的生物量进行估算,为利用无人机遥感监测挺水植物生物量提供了新思路。  相似文献   

20.
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end‐uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild‐type, cgi‐58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High‐leaf‐oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co‐expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant–pest interactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号