首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Hairy root cultures of Atropa belladonna L. were established by infection either with Agrobacterium rhizogenes ATCC 15834 or MAFF 03-01724, and transgenic plants were obtained from both hairy root cultures. Doubly transformed roots were induced by re-infection of the leaf segments of transgenic Atropa belladonna plants (A. rhizogenes 15834) with MAFF 03-01724. Shoots and viviparous leaves were regenerated from the doubly transformed roots. The genetic transformation was determined by the opine assay (agropine, mannopine and/or mikimopine) and polymerase chain reaction. Physiological changes and tropane alkaloid biosynthesis in the hairy roots (singly and doubly transformed) were investigated. The alkaloid content in the doubly transformed root strain was intermediate as compared to the root strains which were singly transformed. On the other hand endogenous IAA levels in doubly transformed roots were significantly decreased compared to both singly transformed roots.Abbreviations BA benzyladenine - IAA indoleacetic acid - NAA naphthaleneacetic acid - PCR polymerase chain reaction - t-ZR trans-zeatin  相似文献   

2.
A method is described for producing genetically transformed plants from explants of three scentedPelargonium spp. Transgenic hairy root lines were developed fromPelargonium spp leaf explants and microcuttings after inoculation withAgrobacterium rhizogenes strains derived from the agropine A4 strain. Hairy root lines grew prolifically on growth regulator-free medium. Transgenic shoots were regenerated from hairy roots and the plants have been successfully transferred to soil. The phenotype of regenerated plants has been characterized as having abundant root development, more leaves and internodes than the controls, short internodes and highly branched roots and aerial parts. Southern blot analyses have confirmed the transgenic nature of these plants.  相似文献   

3.
Summary Datura arborea and D. sanguinea hairy roots were produced by cocultivation of leaf fragments with Agrobacterium rhizogenes strain NCPP 1855. Adventitious buds emerged spontaneously, without exogenous growth regulators, from seven hairy root clones of D. arborea and from one hairy root clone of D. sanguinea. Regenerated plants were successfully acclimatized in the greenhouse. The integration of the bacterial TL-DNA into the genome of the putative transformed plants was confirmed by Southern blot analysis. Transgenic plants displayed increased ability to root in vivo. Morphological traits with relevant ornamental value like plant height, leaf number, size and shape, internode number, and internode length were also affected. Transformation by wild-type Ri TL-DNA provided the chance to study plant growth and differentiation and to select improved genotypes.  相似文献   

4.
Crane C  Wright E  Dixon RA  Wang ZY 《Planta》2006,223(6):1344-1354
Medicago truncatula, barrel medic, is a forage crop that has been developed into a model legume. The development of new transformation methods is important for functional genomic studies in this species. Based on Agrobacterium tumefaciens-mediated transformation of root explants, we developed an effective system for producing M. truncatula (genotype R108) transgenic plants. Among the four A. tumefaciens strains (AGL1, C58C1, EHA105 and LBA4404) tested, EHA105 and AGL1 were most effective in regenerating transgenics. Callus induction frequency from root explants was 69.8%, and plantlet/shoot regeneration frequency was 41.3% when EHA105 was used. Transgenic nature of the regenerated plants was confirmed by PCR and Southern hybridization analyses. Progeny analysis revealed stable Mendelian meiotic transmission of transgenes. Because M. truncatula is particularly useful for the study of root endosymbiotic associations, we further developed a plant regeneration system from A. rhizogenes-transformed hairy roots of M. truncatula. Fertile true transgenic plants were regenerated from the hairy roots, thus allowing the assessment of gene functions at the whole plant level. Segregation analysis revealed that the hairy root genes could be segregated out in the progenies. By coupling A. rhizogenes-mediated hairy root transformation and the regeneration system reported here, once potential genes of interest are identified, the transformed hairy roots carrying such genes could be directly regenerated into plants for more detailed characterization of the genes.  相似文献   

5.
An efficient protocol for shoot regeneration and genetic transformation was applied to root segments of a new Lotus corniculatus L. cultivar Bokor. The shoots, that regenerated on root segments, were inoculated with Agrobacterium rhizogenes A4M70GUS, and produced hairy roots, which on media with 0.2 mg dm−3 benzylaminopurine, regenerated shoots. After rooting and acclimation, the transformed plants were planted in the experimental field. Their morphological traits were compared to controls. No signs of the rol genes phenotype were present. The transformants were significantly taller than controls, while there were no significant differences in the leaf area. The glucuronidase activity and the presence of uidA gene was demonstrated in transformed plants of T0 and in seedlings of T1 generations. It is concluded that A. rhizogenes could be a vector of choice for the transfer of desirable genes into the bird's foot trefoil genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Summary Agrobacterium transformation of stem internodes of four monohaploid (839-79, 849-7, 851-23, 855-1) and two diploid (M9 and HH260) potato genotypes using hairy root-inducing single (LBA 1020, LBA 9365, LBA 9402) and binary (LBA 1060KG) vectors is reported. Various media and successive culture steps were tested for plant regeneration from different transformed root clones. The fate of introduced genetic markers in root clones and regenerated plants (hairy root phenotype, hormone autotrophy, opine production, kanamycin resistance, -glucuronidase activity), the ploidy stability and protoplast yield were analysed. The transformation efficiency of stem internodes (hairy root production) and the regeneration capacity of the transformed root clones greatly differed within and between the various potato genotypes. The regenerated plants obtained after transformation with both types of vectors often showed the absence of one or more genetic markers. However, transformation with the binary Agrobacterium vector generally resulted in the stable presence of the opines in all transformed root clones and most regenerated plants. In HH260, transformation efficiency, plant regeneration of transformed root clones, protoplast yield and ploidy stability were the highest as compared to the other genotypes. The application of these transformed plants as marker lines in gene mapping and gene expression studies is indicated.  相似文献   

7.
Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5±3.5%) as compared to stem (32.7±4.8%) or cotyledon (16.2±5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5±9.8%) than that of non-transformed roots (31.7 ±9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.Communicated by M.R. Davey  相似文献   

8.
Shoot cultures of nickel hyperaccumulating Alyssum murale were established from epicotyl explants of seedlings aseptically germinated on hormone-free MS medium. They were further maintained on media with 0–0.92 μM kinetin. Optimal shoot multiplication was at 0.46 μM kinetin. Inoculation by shoot wounding was performed with overnight suspension of A. rhizogenes A4M70GUS which contains GUS gene cointegrated in pRiA4. After 30 days hairy roots were produced at the wounding site in 31 explant (25% out of 124). Hairy roots were excised and further propagated on hormone-free medium as separate clones. In the first passage clones 3 and 6 could be distinguished by fast growth and spontaneous shoot regeneration. In other clones (12, 23 and 25) shoot regeneration required presence of cytokinins. The five shoot culture clones regenerated from hairy roots were further cultured on media with 0.46 μM kinetin. These shoots were characterized by good elongation and lateral shoot branching, short internodes, minute slightly curled leaves and well developed plagiotropic root system spreading over the surface of media. Thus all plants regenerated from hairy root cultures manifested the characteristic Ri syndrome phenotype. They all had a strong positive GUS reaction. PCR analysis confirmed presence of uidA sequence from the gus construct. They were also tolerant to nickel accumulating up to 24,700 μg g−1 dry weight.  相似文献   

9.
Transgenic hairy roots were induced from petiole and root segments of in vitro plant Aralia elata, a medicinal woody shrub, after co-cultivation with A. rhizogenes ATCC 15834. The percentage of putative hairy root induction from root segments was higher (26.7%) than petiole explants (10.0%). Hairy roots showed active production of lateral roots with vigorous elongation. Transgenic plants were regenerated from hairy roots via somatic embryogenesis. These plants had wrinkled leaves, short petioles and numerous lateral hairy roots. The RT-PCR analysis showed the expression of rol A, B, C, D, aux 1 and 2 genes differed between the transgenic lines. Endogenous IAA level was higher in transgenic than non-transgenic plants. Conclusively, transgenic hairy roots were developed for first time in A. elata and the transgenic hairy root lines showed distinct morphological growth pattern and gene expression.  相似文献   

10.
Summary To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1-1. These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.Abbreviations BA 6-benzyl-aminopurine - NAA 1-Naphthaleneacetic acid - MS Murashige & Skoog (1962) medium  相似文献   

11.
Summary The Dutch potato cultivar Bintje has been transformed by Agrobacterium strain LBA1060KG, which contains two plasmids carrying three different DNAs (TL- and TR-DNA on the Agrobacterium rhizogenes plasmid and TKG-DNA on the pBI121 plasmid). Several transformed root clones were obtained after transformation of leaf, stem, and tuber segments, and plants were then regenerated from these root clones. The expression of the various marker genes [rol, opine, -glucuronidase (GUS), and neomycin phosphotransferase (NPTII)] was determined in several root clones and in regenerated plants. The selection of vigorously growing root clones was as efficient as selection for kanamycin resistance. In spite of the location of NPTII and GUS genes on the same T-DNA, 17% of the root clones did not show GUS activity. Nevertheless, Southern blot analysis showed that these root clones contained at least three copies of the GUS gene. Sixty-four per cent of the root clones contained opines. The expression of these genes, however, was negatively correlated with plant regeneration capacity and normal plant development. The differential expression of the marker genes in the transgenic potato tissues is discussed.  相似文献   

12.
Transgenic Mexican lime [Citrus aurantifolia (Christm.) Swing] plants were regenerated from tissues transformed by Agrobacterium rhizogenes strain A4, containing the wild-type plasmid pRiA4 and the binary vector pESC4 with nos-npt II and cab-gus genes. Transgenic shoots were generated by two different approaches. The first approach used internodal stem segments cocultured with A. rhizogenes. These were placed onto regeneration medium containing Murashige and Skoog salts and B5 organic compounds supplemented with 8 g ⋅ l–1 agar, 7.5 mg ⋅ l–1 6-benzylaminopurine, 1.0 mg ⋅ l–1 -naphthaleneacetic acid, 300 mg ⋅ l–1 cefotaxime and 80 mg ⋅ l–1 kanamycin as a selective agent, and incubated under continuous light at 25 °C. Under these conditions, 76% of the explants produced shoots directly with no hairy root phase, with a mean of 1.3 shoots per explant, and 88% of these shoots were genetically transformed as determined by β-glucuronidase (GUS) assays. In the second approach, segments of transformed roots (15 mm long) obtained from internodal stem segments cocultured with A. rhizogenes were cultured on the above regeneration medium under similar conditions. Forty-one percent of these transformed root segments produced adventitious shoots, with a mean of 2.2 shoots per explant and with 90% of shoots transformed. GUS activity was evident in the transformed roots and in all parts of both transformed shoots and regenerated plants. The presence of the npt II and rolB genes in the regenerated plants was confirmed by PCR analysis. The presence of the npt II gene in the regenerated plants was also confirmed by Southern blot. Using these transformation systems, more than 300 Mexican lime transgenic plants were obtained, 60 of which were adapted to growing in soil. Received: 15 March 1997 / Revision received: 30 December 1997 / Accepted: 19 January 1998  相似文献   

13.
14.
A method is described for producing genetically transformed plants from explants of three scentedPelargonium spp. Transgenic hairy root lines were developed fromPelargonium spp leaf explants and microcuttings after inoculation withAgrobacterium rhizogenes strains derived from the agropine A4 strain. Hairy root lines grew prolifically on growth regulator-free medium. Transgenic shoots were regenerated from hairy roots and the plants have been successfully transferred to soil. The phenotype of regenerated plants has been characterized as having abundant root development, more leaves and internodes than the controls, short internodes and highly branched roots and aerial parts. Southern blot analyses have confirmed the transgenic nature of these plants.  相似文献   

15.
 Eleven independent GUS-positive hairy roots were induced by co-cultivation of leaf explants of Antirrhinum majus L. with Agrobacterium tumefaciens strain GV2260 containing the rol type MAT vector pNPI702. The MAT vector pNPI702 possesses a GUS gene under the 35 S promoter and a removal element in which the 7.6-kb DNA fragments containing the rolA, B, C and D genes and recombinase gene with a 35 S promoter are located between two directly oriented recombination site sequences. A total of 326 adventitious shoots regenerated from 11 independent hairy root lines cultured on 1/2MS medium without plant growth regulators at 25  °C under a 16/8 h (day/night) photoperiod after 8 weeks of stock-culture of hairy roots and 4 weeks of culture of the green segments of hairy roots. Regenerated plants showed either a normal or dwarf morphology. GUS activity was observed in the hairy roots and regenerated shoots. The presence of the GUS gene in the regenerated, morphologically normal plants was confirmed by PCR analysis. Received: 28 February 2000 / Revision received: 18 August 2000 / Accepted: 22 August 2000  相似文献   

16.
We examined the effects of genetic transformation by Agrobacterium rhizogenes on the production of tylophorine, a phenanthroindolizidine alkaloid, in the Indian medicinal plant, Tylophora indica. Transformed roots induced by the bacterium grew in axenic culture and produced shoots or embryogenic calli in the absence of hormone treatments. However, hormonal treatment was required to regenerate shoots in root explants of wild type control plants. Transformed plants showed morphological features typically seen in transgenic plants produced by A. rhizogenes, which include, short internodes, small and wrinkled leaves, more branches and numerous plagiotropic roots. Plants regenerated from transformed roots showed increased biomass accumulation (350–510% in the roots and 200–320% in the whole plants) and augmented tylophorine content (20–60%) in the shoots, resulting in a 160–280% increase in tylophorine production in different clones grown in vitro.  相似文献   

17.
The organogenetic competence of roots and Agrobacterium rhizogenes-induced hairy roots of twelve Lycopersicon genotypes was investigated. Both roots and hairy roots of L. peruvianum, L. chilense, L. hirsutum and two L. peruvianum-derived genotypes regenerated shoots after 2–4 weeks of incubation on zeatin-contained medium. Anatomical analysis showed that shoot regeneration in roots could be direct or indirect, depending on the genotype considered. Hairy roots showed considerable differences in their morphogenetic responses, when compared to the corresponding non-transgenic roots. The differences observed may reflect the influence of the introduced rol genes on hormonal metabolism/sensitivity. Hairy root-derived T0 plants had shortened internodes, wrinkled leaves and abundant root initiation, and most produced flowers and fruits with viable seeds. The hairy root syndrome was detected early in germinating T1 seedlings as a strong reduction in the hypocotyl length. Our data point to the possibility of the use of A. rhizogenes, combined with regenerating Lycopersicon genotypes, in a very simple protocol, based on genetic capacity instead of special procedures for regeneration, to produce transgenic tomato plants expressing rol genes, as well as, genes present in binary vectors. Furthermore, the regeneration differences observed in each Lycopersicon genotype and in transgenic materials expressing rol genes open the possibility for their use in the analysis of both the biochemical and the genetic background of organogenetic competence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
A protocol for induction and establishment of Agrobacterium rhizogenes-mediated hairy root cultures of Picrorhiza kurroa was developed through optimization of the explant type and the most suitable bacterial strain. The infection of leaf explants with the LBA9402 strain resulted in the emergence of hairy roots at 66.7% relative transformation frequency. Nine independent, opine and TL-positive hairy root clones were studied for their growth and specific glycoside (i.e., kutkoside and picroside I) productivities at different growth phases. Biosynthetic potentials for the commercially desirable active constituents have been expressed by all the tested hairy root clones, although distinct inter-clonal variations could be noted in terms of their quantity. The yield potentials of the 14-P clone, both in terms of biomass as well as individual glycoside contents (i.e., kutkoside and picroside I), superseded that of all other hairy root clones along with the non-transformed, in vitro-grown control roots of P. kurroa. The present communication reports the first successful establishment, maintenance, growth and selection of superior hairy root clone of Picrorhiza kurroa with desired phyto-molecule production potential, which can serve as an effective substitute to its roots and thereby prevent the indiscriminate up-rooting and exploitation of this commercially important, endangered medicinal plant species. CIMAP Publication No.: 2007-28J  相似文献   

19.
Agrobacterium rhizogenes (wild-type strains 8196 and 15834) transformation of pumpkin (Cucurbita pepo L.) intact seedlings grown in vivo, and 6–8-day-old excised cotyledons cultured in axenic conditions was investigated. Transformed (hairy) roots were successfully induced only on the excised cotyledons with the strain 8196, while intact seedlings failed to form hairy roots with either of the two different bacterial strains. Axenic hairy-root cultures established on MS medium without hormones grew vigorously. Mannopine was detected in all transgenic root clones examined. The peroxidase activity in transformed roots was higher compared with normal roots. Electrophoretic analyses of soluble proteins and isoperoxidases showed substantial differences between transformed and normal pumpkin roots.  相似文献   

20.
Transformed root cultures of Coluria geoides Ledeb. were established with the use of Agrobacterium rhizogenes LBA 9402. Both normal and transformed root cultures were investigated for their growth and yield of eugenol. Normal roots were grown in B5 medium-supplemented with 0.2 mg l-1 of kinetin and 0.2 mg l-1 of 1-naphthaleneacetic acid (NAA). Hairy roots grew well in hormone-free B5 medium. Both hairy roots and normal roots produced glycosidic bound eugenol. as with the roots of intact plants, eugenol was the main component of the total essential oils obtained from hairy root and normal root cultures. The yield of eugenol from normal roots was 0.1–0.25% of the dry wt. and depended on the development stage of the culture. Yield of eugenol from hairy roots was 0.08–0.1% of the dry wt. NAA modified the hairy root morphology and influenced the yield of eugenol.Abbreviations NAA 1-naphthaleneacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号