首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants.  相似文献   

3.
We isolated several mutants of Arabidopsis thaliana (L.) Heynh. that accumulated less anthocyanin in the plant tissues, but had seeds with a brown color similar to the wild-type. These mutants were allelic with the anthocyaninless1 (anl1) mutant that has been mapped at 15.0 cM of chromosome 5. We performed fine mapping of the anl1 locus and determined that ANL1 is located between the nga106 marker and a marker corresponding to the MKP11 clone. About 70 genes are located between these two markers, including three UDP-glucose:flavonoid-3-O-glucosyltransferase-like genes and a glutathione transferase gene (TT19). A mutant of one of the glucosyltransferase genes (At5g17050) was unable to complement the anl1 phenotype, showing that the ANL1 gene encodes UDP-glucose:flavonoid-3-O-glucosyltransferase. ANL1 was expressed in all tissues examined, including rosette leaves, stems, flower buds and roots. ANL1 was not regulated by TTG1.  相似文献   

4.
5.
6.
7.
8.
Panchuk II  Zentgraf U  Volkov RA 《Planta》2005,222(5):926-932
Oxygen-free radicals are thought to play an essential role in senescence. Therefore, the expression patterns of the small gene family encoding the H2O2 scavenging enzymes ascorbate peroxidase (APX; EC 1.11.1.11) were analyzed during senescence of Arabidopsis thaliana (L.) Heinh. Applying real-time RT-PCR, the mRNA levels were quantified for three cytosolic (APX1, APX2, APX6), two chloroplastic types (stromal sAPX, thylakoid tAPX), and three microsomal (APX3, APX4, APX5) isoforms identified in the genome of Arabidopsis. The genes of chloroplastic thylakoid-bound tAPX and the microsomal APX4 exhibit a strong age-related decrease of mRNA level in leaves derived from one rosette as well as in leaves derived from plants of different ages. In contrast to the tAPX, the mRNA of sAPX was only reduced in old leaves of old plants. The microsomal APX3 and APX5, and the cytosolic APX1, APX2, and APX6 did not show remarkable age-related changes in mRNA levels. The data show that expression of the individual APX genes is differentially regulated during senescence indicating possible functional specialization of respective isoenzymes. The hydrogen peroxide levels seem to be controlled very precisely in different cell compartments during plant development.  相似文献   

9.
In Arabidopsis, NPR1 (non-expressor of pathogenesis related genes 1, AtNPR1) functions downstream of salicylic acid (SA) and modulates the SA mediated systemic acquired resistance. It is also involved in a cross talk with the jasmonate pathway that is essential for resistance against herbivores and necrotrophic pathogens. Overexpression of AtNPR1 in transgenic plants resulted in enhanced disease resistance. Recently, tobacco transgenic plants expressing AtNPR1 were shown to be tolerant to the early instars of Spodoptera litura (Meur et al., Physiol Plant 133:765–775, 2008). In this communication, we show that the heterologous expression of AtNPR1 in tobacco has also enhanced the oxidative stress tolerance. The transgenic plants exhibited enhanced tolerance to the treatment with methyl viologen. This tolerance was associated with the constitutive upregulation of PR1, PR2 (glucanase), PR5 (thaumatin like protein), ascorbate peroxidase (APX) and Cu2+/Zn2+ superoxide dismutase (SOD). This is the first demonstration of the novel function of heterologous expression of AtNPR1 in oxidative stress tolerance in transgenic tobacco.  相似文献   

10.
We conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A. thaliana wild-type stem cuticular chemicals. Five lines showed distinct differences from the wild type and were further analyzed by gas chromatography and scanning electron microscopy. The five mutants were mapped to specific chromosome locations and tested for allelism with other wax mutant loci mapping to the same region. Toward this end, the mapping of the cuticular wax (cer) mutants cer10 to cer20 was conducted to allow more efficient allelism tests with newly identified lines. From these five lines, we have identified three mutants defining novel genes that have been designated CER22, CER23, and CER24. Detailed stem and leaf chemistry has allowed us to place these novel mutants in specific steps of the cuticular wax biosynthetic pathway and to make hypotheses about the function of their gene products.Abbreviations EMS Ethyl methane sulfonate - SEM Scanning electron microscopy - SSLP Simple sequence length polymorphism - WT Wild type  相似文献   

11.
12.
13.
Gómez MD  Beltrán JP  Cañas LA 《Planta》2004,219(6):967-981
END1 was isolated by an immunosubtractive approach intended to identify specific proteins present in the different pea (Pisum sativum L.) floral organs and the genes encoding them. Following this strategy we obtained a monoclonal antibody (mAbA1) that specifically recognized a 26-kDa protein (END1) only detected in anther tissues. Northern blot assays showed that END1 is expressed specifically in the anther. In situ hybridization and immunolocalization assays corroborated the specific expression of END1 in the epidermis, connective, endothecium and middle layer cells during the different stages of anther development. END1 is the first anther-specific gene isolated from pea. The absence of a practicable pea transformation method together with the fact that no END1 homologue gene exists in Arabidopsis prevented us from carrying out END1 functional studies. However, we designed functional studies with the END1 promoter in different dicot species, as the specific spatial and temporal expression pattern of END1 suggested, among other things, the possibility of using its promoter region for biotechnological applications. Using different constructs to drive the uidA (-glucuronidase) gene controlled by the 2.7-kb isolated promoter sequence we have proven that the END1 promoter is fully functional in the anthers of transgenic Arabidopsis thaliana (L.) Heynh., Nicotiana tabacum L. (tobacco) and Lycopersicon esculentum Mill. (tomato) plants. The presence in the –330-bp region of the promoter sequence of three putative CArG boxes also suggests that END1 could be a target gene of MADS-box proteins and that, subsequently, it would be activated by genes controlling floral organ identity.Abbreviations GUS -Glucuronidase - uidA -Glucuronidase gene - Nos Nopaline synthase gene - nptII Neomycin phosphotransferase II gene - SEM Scanning electron microscopy GenBank accession numbers for the END1 cDNA and the END1 promoter: AY 091466 and AY 324651, respectively  相似文献   

14.
The MADS box genes participate in different steps of vegetative and reproductive plant development, including the most important phases of the reproductive process. Here we describe the isolation and characterisation of two Asparagus officinalis MADS box genes, AOM3 and AOM4. The deduced AOM3 protein shows the highest degree of similarity with ZAG3 and ZAG5 of maize, OsMADS6 of rice and AGL6 of Arabidopsis thaliana. The deduced AOM4 protein shows the highest degree of similarity with AOM1 of asparagus, the SEP proteins of Arabidopsis and the rice proteins OsMADS8, OsMADS45 and OsMADS7. The high level of identity between AOM1 and AOM4 made impossible the preparation of probes specific for one single gene, so the hybridisation signal previously described for AOM1 is probably due to the expression of both genes. The expression profile of AOM3 and AOM1/AOM4 during flower development is identical, and similar to that of the SEP genes. Asparagus genes, however, are expressed not only in flower organs, but also in the different meristem present on the apical region of the shoot during the flowering season: the apical meristem and the three lateral meristems emerging from the leaf axillary region that will give rise to flowers and lateral inflorescences during flowering season, and to phylloclades and branches during the subsequent vegetative phase. The expression of AOM3 and AOM1/AOM4 in these meristems appears to be correlated with the reproductive function of the apex as the hybridisation signal disappears when the apex switches to vegetative function.  相似文献   

15.
16.
This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin. In the 24 h after application, SA application led to a gradual increase in the expression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene and a temporary peak in the expression of the amorpha-4,11-diene synthase (ADS) gene. However, the expression of the farnesyl diphosphate synthase (FDS) gene and the cytochrome P450 monooxygenase (CYP71AV1) gene showed little change. At 96 h after SA (1.0 mM) treatment, the concentration of artemisinin, artemisinic acid and dihydroartemisinic acid were 54, 127 and 72% higher than that of the control, respectively. Taken together, these results suggest that SA induces artemisinin biosynthesis in at least two ways: by increasing the conversion of dihydroartemisinic acid into artemisinin caused by the burst of ROS, and by up-regulating the expression of genes involved in artemisinin biosynthesis.  相似文献   

17.
Bellaoui M  Gruissem W 《Planta》2004,219(5):819-826
The DCL (defective chloroplasts and leaves) gene of tomato (Lycopersicon esculentum Mill.) is required for chloroplast development, palisade cell morphogenesis, and embryogenesis. Previous work suggested that DCL protein is involved in 4.5S rRNA processing. The Arabidopsis thaliana (L.) Heynh. genome contains five sequences encoding for DCL-related proteins. In this paper, we investigate the function of AtDCL protein, which shows the highest amino acid sequence similarity with tomato DCL. AtDCL mRNA was expressed in all tissues examined and a fusion between AtDCL and green fluorescent protein (GFP) was sufficient to target GFP to plastids in vivo, consistent with the localization of AtDCL to chloroplasts. In an effort to clarify the function of AtDCL, transgenic plants with altered expression of this gene were constructed. Deregulation of AtDCL gene expression caused multiple phenotypes such as chlorosis, sterile flowers and abnormal cotyledon development, suggesting that this gene is required in different organs. The processing of the 4.5S rRNA was significantly altered in these transgenic plants, indicating that AtDCL is involved in plastid rRNA maturation. These results suggest that AtDCL is the Arabidopsis ortholog of tomato DCL, and indicate that plastid function is required for normal plant development.Abbreviations DCL Defective chloroplasts and leaves - GFP Green fluorescent protein  相似文献   

18.
Monosaccharide transporter (MST) genes of Lupinus polyphyllus and L. albus were cloned, expressed and characterised. The isolation and functional characterisation of a cDNA clone and its corresponding genomic clone of a sugar transporter from L. polyphyllus (LpSTP1) is reported. Phylogenetic comparison of the nucleic and amino acid sequences showed the highest similarity to the AtSTP1 gene from Arabidopsis thaliana, which encodes a high affinity sugar transporter. The similar topology as well as the substrate specificity and expression pattern of LpSTP1 encoded protein additionally support the high similarity to the AtSTP1 gene product. The 1,590 bp LpSTP1 cDNA clone was heterologously expressed in yeast resulting in a fully functional specific sugar transporter. This transformation restored the viability of a yeast deletion mutant, which is devoid of all intrinsic MSTs and thus unable to take up and grow on hexose-containing media. The LpSTP1 protein is postulated to be a high-affinity MST since it supported growth best on media containing 0.2% hexose. Tissue-specific expression of LaSTP1 in L. albus was assayed by real-time PCR, which revealed that the lupin STP1 is mainly expressed in flower buds, flowers and young leaves. The results suggest that the main role of LaSTP1 is to catalyse monosaccharide import in sink tissues to meet increased carbohydrate demand during plant development. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Although the hormones, gibberellin and auxin, are known to play a role in the initiation of fruits, no such function has yet been demonstrated for abscisic acid (ABA). However, ABA signaling and ABA responses are high in tomato (Solanum lycopersicum L.) ovaries before pollination and decrease thereafter (Vriezen et al. in New Phytol 177:60–76, 2008). As a first step to understanding the role of ABA in ovary development and fruit set in tomato, we analyzed ABA content and the expression of genes involved in its metabolism in relation to pollination. We show that ABA levels are relatively high in mature ovaries and decrease directly after pollination, while an increase in the ABA metabolite dihydrophaseic acid was measured. An important regulator of ABA biosynthesis in tomato is 9-cis-epoxy-carotenoid dioxygenase (LeNCED1), whose mRNA level in ovaries is reduced after pollination. The increased catabolism is likely caused by strong induction of one of four newly identified putative (+)ABA 8′-hydroxylase genes. This gene was named SlCYP707A1 and is expressed specifically in ovules and placenta. Transgenic plants, overexpressing SlCYP707A1, have reduced ABA levels and exhibit ABA-deficient phenotypes suggesting that this gene encodes a functional ABA 8′-hydroxylase. Gibberellin and auxin application have different effects on the LeNCED1 and SlCYP707A1 gene expression. The crosstalk between auxins, gibberellins and ABA during fruit set is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号