首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The effect of GA3 on coleoptile-and first leaf elongation of tall (rht1) and semi-dwarf (Rht1) nearly-isogenic genotypes, within each of 25 random F9 wheat families, was determined on seedlings grown in a growth room at 18 °C. Conspicuous and very significant inter-family variation in the response of the first leaf to GA3 application was found in both the rht1 and Rht1 genotypes. The magnitudes of the response of the different families within genotypes to GA3 were not related to the leaf length of their untreated seedlings. It is suggested that, under given environmental conditions, background genotypic effects, inducing inter-family variation in responsiveness to GA3, regulate the elongation growth up to the limits set by the Rht alleles.  相似文献   

2.
BACKGROUND AND AIMS: The gibberellin-insensitive Rht-B1b and Rht-D1b dwarfing genes are known to reduce the size of cells in culms, leaves and coleoptiles of wheat. Resulting leaf area development of gibberellin-insensitive wheats is poor compared to standard height (Rht-B1a and Rht-D1a) genotypes. Alternative dwarfing genes to Rht-B1b and Rht-D1b are available that reduce plant height, such as the gibberellin-responsive Rht8 gene. This study aims to investigate if Rht8 has a similar dwarfing effect on the size of leaf cells to reduce leaf area. METHODS: The effect of Rht8 on cell size and leaf area was assessed in four types of epidermal cells (interstomatal, long, sister and bulliform) measured on leaf 2 of standard height (rht8) and semi-dwarf (Rht8) doubled-haploid lines (DHLs). The DHLs were derived from a cross between very vigorous, standard height (rht8) ('Vigour18') and less vigorous, semi-dwarf (Rht8) ('Chuan-Mai 18') parents. KEY RESULTS: Large differences were observed in seedling vigour between the parents, where 'Vigour18' had a much greater plant leaf area than 'Chuan-Mai 18'. Accordingly, 'Vigour18' had on average longer, wider and more epidermal cells and cell files than 'Chuan-Mai 18'. Although there was correspondingly large genotypic variation among DHLs for these traits, the contrast between semi-dwarf Rht8 and tall rht8 DHLs revealed no difference in the size of leaf 2 or average cell characteristics. Hence, these traits were independent of plant height and therefore Rht8 in the DHLs. Correlations for leaf and average cell size across DHLs revealed a strong and positive relationship between leaf width and cell files, while the relationships between leaf and cell width, and leaf and cell length were not statistically different. The relative contribution of the four cell types (long, sister, interstomatal and bulliform) to leaf size in the parents, comparative controls and DHLs is discussed. CONCLUSIONS: Despite a large range in early vigour among the DHLs, none of the DHLs attained the leaf area or epidermal cell size and numbers of the vigorous rht8 parent. Nonetheless, the potential exists to increase the early vigour of semi-dwarf wheats by using GA-sensitive dwarfing genes such as Rht8.  相似文献   

3.
In near-isogenic lines of winter wheat (Triticum aestivum L. cv. Maris Huntsman) grown at 20° C under long days the reduced-height genes, Rht1 (semi-dwarf) and Rht3 (dwarf) reduced the rate of extension of leaf 2 by 12% and 52%, respectively, compared with corresponding rht (tall) lines. Lowering the growing temperature from 20° to 10° C reduced the rate of linear extension of leaf 2 by 2.5-fold (60% reduction) in the rht3 line but by only 1.6-fold (36% reduction) in the Rht3 line. For both genotypes, the duration of leaf expansion was greater at the lower temperature so that final leaf length was reduced by only 35% in the rht3 line and was similar in the Rht3 line at both temperatures. Seedlings of the rht3 (tall) line growing at 20° C responded positively to root-applied gibberellin A1 (GA1) in the range 1–10 μM GA1; there was a linear increase in sheath length of leaf 1 whereas the Rht3 (dwarf) line remained unresponsive. Gibberellins A1, 3, 4, 8, 19, 20, 29, 34, 44 and 53 were identified by full-scan gas chromatography-mass spectrometry in aseptically grown 4-d-old shoots of the Rht3 line. In 12-d-old seedlings grown at 20° C, there were fourfold and 24-fold increases in the concentration of GA1 in the leaf expansion zone of Rht1 and Rht3 lines, respectively, compared with corresponding rht lines. Although GA3 was present at a similar level to GA1 in the rht3 (tall) line it accumulated only fivefold in the Rht3 (dwarf) line. The steady-state pool sizes of endogenous GAs were GA19 ? GA20 = GA1 in the GA-responsive rht3 line whereas in the GA non-responsive Rht3 line the content of GA19≈ GA20 ? GA1. It is proposed that one of the consequences of GA1 action is suppression of GA19-oxidase activity such that the conversion of GA19 to GA20 becomes a rate-limiting step on the pathway to GA1 in GA-responsive lines. In the GA-non-responsive Rht lines it is suggested that GA19 oxidase is not downregulated to the same extent and GA1 accumulates before the next rate-limiting step on the pathway, its 2β-hydroxylation to GA8. The steady-state pool sizes of GA19, 20, 1, 3 and 8 were similar in developmentally equivalent tissues of the rht3 (tall) line growing at 10° C and 20° C despite a 2.5-fold difference in the rate of leaf expansion. In contrast, in the Rht3 (dwarf) line, the extent of accumulation of GA1 reflected the severity of the phenotype at the two temperatures with slower growing tissues accumulating less, not more, GA1. These results are interpreted as supporting the proposed model of regulation of the GA-biosynthetic pathway rather than previous suggestions that GA1 accumulates in GA-insensitive dwarfs as a consequence of reduced growth rates.  相似文献   

4.
A bread wheat cultivar, Saratovskaya 29, (S29), its nearly isogenic lines carrying alien translocations [Lr9 from Aegilops umbellulata (Eg29) and (Lr19) from Agropyron elongatum (Ps29)] and two F1 hybrids between three nearly isogenic lines of S29 that differed by the Lr19+Rht1,Pro1+Pro2 and Ppd1+Ppd2 gene complexes, namely the S29 (Lr19+Rht1)/S29 (Ppd1+Ppd2) F1 and the S29 (Pro1+Pro2)/S29 (Lr19+Rht1) F1 were studied for their culture response with the following results. (1) Translocations with Lr9 and Lr19 decreased embryo frequency and green plant regeneration. (2) Both F1 hybrids showed a decrease in embryo frequency. One of the F1 hybrids, S29 (Lr19+Rht1)/S29 (Ppd1+Ppd2) showed a decrease, with respect to S29 for green plant regeneration; the other F1 S29 (Pro1+Pro2)/S29 (Lr19+Rht1), equalled S29 for green plant regeneration. (3) The gene complex of the F1 hybrid S29 (Pro1+Pro2)/S29 (Lr19+Rht1) was better than that of the F1 hybrid S29 (Lr19+Rht1)/S29 (Ppd1+Ppd2) for embryo induction and green plant regeneration. This effect was possibly induced by interactions between the Pro1+Pro2 and Lr19+Rht1 genes or was the result of direct actions of the Pro1+Pro2 genes.  相似文献   

5.
John L. Stoddart 《Planta》1984,161(5):432-438
Growth parameters were determined for tall (rht3) and dwarf (Rht3) seedlings of wheat (Triticum aestivum L.). Plant statures and leaf length were reduced by 50% in dwarfs but root and shoot dry weights were less affected. Leaves of dwarf seedlings had shorter epidermal cells and the numbers of cells per rank in talls and dwarfs matched the observed relationships in overall length. Talls grew at twice the rate of dwarfs (2.3 compared with 1.2 mm h-1). [3H]Gibberellin A1 ([3H]GA1) was fed to seedlings via the third leaf and metabolism was followed over 12 h. Immature leaves of tall seedlings transferred radioactivity rapidly to compounds co-chromatographing with [3H]gibberellin A8 ([3H]GA8) and a conjugate of [3H]GA8, whereas leaves of dwarf seedlings metabolised [3H]GA1 more slowly. Roots of both genotypes produced [3H]GA8-like material at similar rates. Isotopic dilution studies indicated a reduced 2-hydroxylation capacity in dwarfs, but parallel estimates of the endogenous GA pool size, obtained by radioimmunoassay, indicated a 12–15 times higher level of GA in the dwarf immature leaves. Dwarfing by the Rht3 gene does not appear to operate through enhanced, or abnormal metabolism of active gibberellins and the act of GA metabolism does not bear an obligate relationship to the growth response.Abbreviations GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

6.
Summary Three series of near-isogenic wheat lines differing in dwarfing alleles, in the varietal backgrounds of Maris Huntsman, Maris Widgeon and Bersee, and the F2 grain on intravarietal F1 hybrids, produced with a chemical hybridising agent, were examined for grain size and protein content. Individual F2 grains from Rht1/rht, Rht2/rht and Rht3/rht F1 spikes were classified for Rht genotype by assaying embryo half grains in a gibberellic acid seedling response test, while the remaining half was used for protein determination. Mean grain weight and protein percentage were lower in all homozygous isogenic lines and the Rht/rht F1 hybrids than in the respective tall lines, in an allele dose-dependent manner. In all the hybrids, the Rht genotype of individual F2 grains, which segregated within the spikes of F1 plants, had no significant effects on grain weight or protein. Consequently, the pleiotropic effects of the Rht alleles on these yield and quality components must be attributed to their presence in maternal plant tissues rather than in the endosperm or embryo tissues of individual grains.  相似文献   

7.
Summary The falcifolia (fal) syndrome is a malformation characterized by shoot sectors with sickle-shaped leaves, which appears in hybrids between Oenothera suaveolens and O. lamarckiana and shows a non-chromosomal inheritance of a previously undescribed type. The determinants, their location in the cell, and the mechanism of their expression are unknown. The defect is the result of a cross in which mixing of two different cytoplasms occurs, without the usual predominantly maternal inheritance. F1 progeny of reciprocal crosses show a quantitative difference in the frequency and degree of expression of the fal character. When the F1 progeny are backcrossed to the parents, the percentage of fal is high in crosses to O. suaveolens and low in those to O. lamarckiana. This manner of transmission is observed regardless of whether the hybrid is used as seed or pollen parent or shows a normal or fal phenotype. F2 generations from F1 plants having either a normal or a fal phenotype always include a certain percentage of fal plants, although the latter generally produce a higher percentage of fal progeny. If a second backcross is carried out, plants that produce normal progeny on self-pollination behave differently from those that produce some fal off-spring when selfed. The latter are similar to the F1 with regard to the transmission of the fal trait. Plants of the F1B1 yielding normal progeny upon selfing produce normal progeny in the F1B2 if the parent to which they are backcrossed is the same as in the first backcross; if the parents of the first and second backcross differ, a high percentage of fal offspring is obtained. Again, whether the hybrid is used as seed or pollen parent is not relevant. Exceptions to this behaviour have been observed only rarely in that the character of the penultimate cross is retained. There is some evidence of somatic segregation of the fal determinants, since sister plants may react differently; this suggestion is supported by comparing the progenies of different branches of a self-pollinated fal plant of the F1 generation.Abbreviations F1, F2, F3, F4 First through fourth filial generation, obtained by self-pollination - F1B1 First backcross generation, i.e. the F1 was backcrossed to one of the original parents - F1B2 Second backcross generation, i.e. the F1B1 was backcrossed to one of the original parents - F1B3 Third backcross generation, i.e. the F1B2 was backcrossed to one of the original parents - (F1B1)D1 Descendants obtained by self-pollination of a F1B1 plant; further generations obtained by self-pollination are designated as D2, D3, D4 - (F1B1)D1B1 Descendant or generation obtained by a backcross of the D1 of an F1B1. Backcrosses of the D2 and D3 are designated mutatis mutandis - (F1B1)D1B2 Generation obtained by a backcross of the (F1B1)D1B1  相似文献   

8.
The corn earworm,Helicoverpa zea (Boddie), is a perennial economic pest of field crops in the United States. Maize,Zea mays L., is the major host crop promoting the build-up of devastating corn earworm populations that limit full production of cotton, soybean, peanut, and grain sorghum. Resistance to the corn earworm in maize and in particular sweet maize, would provide an environmentally safe, economical method of control for this pest insect. Antibiotic effects of corn silks on this insect are: small larvae, extended developmental period, and reduced fecundity. Silks from individual maize plants of resistant and susceptible lines and progeny in six generations consisting of parents (P1, P2), F1, F2, and backcrosses BC1.1 (F1 × P1) and BC1.2 (F1 × P2) from each of four crosses were used to determine the genetic basis of the antibiotic resistance of silks to the corn earworm. In the cross of Zapalote Chico × PI340856, genes controlling resistance in the silks to the corn earworm larvae are dominant in PI340856 to those in Zapalote Chico. The cross of Zapalote Chico × GT114 involves parents differing in degree of resistance, and possibly differing for the genetic mechanism by which the resistance is inherited. The inheritance of resistance may involve non-additive (dominance and epistasis) genetic variance. A digenic 6-parameter model indicated (1) the resistance in this cross is controlled by more than one pair of genes and (2) some or all of the genes interact to cause non-allelic interaction. Thus, the resistance in this cross may be controlled by both dominant and recessive genes. The resistance of Zapalote Chico × CI64, an intermediate inbred, is influenced by additive gene effects. The digenic model adequately predicts all generation means of the cross of GT3 × PI340856 except for the F1. Thus, it appears that the additive-dominance model is not satisfactory for this cross involving susceptible and resistant parents. Generation mean analysis indicates that resistance to silk-feeding by corn earworm larvae is under genetic control, but gene action differs from one type of cross to another.  相似文献   

9.
Summary A series of experiments was conducted to determine the inheritance of seed weight in cucumber. Matings between a Cucumis sativus var. sativus (Cs) L. inbred line (USDA WI 1606; P1) and a C. sativus var. hardwickii (Royle) Kitamura (Ch) collection (PI 215589; P2) were made to produce seed of reciprocal F1, F2, and BC1 families. Families were grown under field and greenhouse conditions, and seeds were extracted from fruit 55 to 60 days post-pollination. Seed of F1 and F2 families was obtained using the Cs inbred WI2808 (P12) and the Ch collection LJ 90430 (P10), and seed of F1 families were produced using a North Carolina Design II mating scheme in which three Cs (P3= GY-14; P4=WI 1379; P5=WI 1909) inbreds were used as maternal parents and seven Ch collections (P2; P6= PI462369; P7=486336; P8=LJ91176; P9=273469; P10= 2590430; P11=PI187367) were used as paternal parents. Mean seed weights of F1 progeny reflected the dominance of genes of the C. sativus var. sativus parent. Transformation to number of seeds per unit weight resulted in increased variance homogeneity within generations and a broad-sense heritability ranging between 26% to 56%. Additive and dominance effects were important in the expression of seed weight in P1×P2 progeny produced in the greenhouse and additive effects were important in field grown progeny resulting from P1×P2 and P10×P12 matings. The estimated number of factors or loci involved ranged between 10 to 13, depending on the method of calculation.  相似文献   

10.
Summary The ability to predict agronomic performance of progeny from a cross would be a great benefit to plant breeders in selecting parents. The predictive value of parental genetic relationships estimating F1 progeny means and F4 family variances of nine argronomic traits was tested in 76 oat crosses, using genetic distance measures based on coefficients-of-parentage, quantitatively inherited morphological characters, and discretely inherited biochemical and morphological characters. Coefficients-of-parentage were better predictors of F1 performance than similarity measures derived from plant morphology or discretely inherited characters. Combined distance measures were better estimators of F1 specific combining ability (SCA) effects than any single measure. Among cultivars of similar adaptation and quantitative morphology, crosses between parents with high coefficients-of-parentage gave higher SCA effect values than crosses of distantly related parents for grain yield and total biomass. The opposite was found for crosses among cultivars of different adaptation or quantitative morphology. The best predictor of trait variances among F4 families was coefficients-of-parentage. Crosses between more distantly related parents produced larger variances among families than crosses between closely related parents for plant biomass. For grain yield, test weight, heading date, grain filling period, and maturity date, crosses between more closely related parents produced larger among-family variances than crosses of distantly related parents. Crosses between more distantly related parents involved at least one parent unadapted to central New York, and resulted in most of the progeny being generally unadapted. This, in part, may account for the low genetic variances for heading date, test weight, and grain yield in crosses of distantly related parents.  相似文献   

11.
One approach to gain an insight into the genetics of tree architecture is to make use of morphologically divergent parents and study their segregating progeny in the F2 and backcross (B1) generations. This approach was chosen in the present study in which material of a three-generation pedigree growing side by side in a replicated plantation, was analyzed. The pedigree included Populus trichocarpa (T) and P. deltoides (D) parents, their F1 and F2 hybrids and their B1 hybrids to the D parent. The trees were grown in the environment of the T parent and measured for the first 2 years of growth. Nine quantitative traits were studied at the stem, branch and leaf levels of tree architecture, in which the original parents differed. Strong F1 hybrid vigor relative to the better parent (T) was expressed in growth and its components. Most quantitative traits in the F2 and B1 hybrids were intermediate between the T and D parents but displayed a wide range of variation due to segregation. The results from the analysis of variance indicated that all morphometric traits were significantly different among F2 and B1 clones, but the B1 hybrids were more sensitive to replicates than the F2. Broad-sense heritabilities (H 2) based on clonal means ranged from moderately high to high (0.50–0.90) for the traits studied, with H 2 values varying over age. The H 2 estimates reflected greater environmental noise in the B1 than in the F2, presumably due to the greater proportion of maladaptive D alleles in those hybrids. In both families, sylleptic branch number and length, and leaf size on the terminal, showed strong genetic correlations with stem growth. The large divergence between the two original parents in the traits studied, combined with the high chromosome number in Populus (2n=38), makes this pedigree well suited for the estimation of the number of quantitative trait loci (QTLs) underlying quantitative variation by Wright's biometric method (1968). Variation in several traits was found to be under the control of surprisingly few major QTLs: 3–4 in 2nd-year height and diameter growth, a single QTL in stem diameter/height ratio.  相似文献   

12.
Hybrid breeding is an effective approach in many agricultural crops. In allogamous tree species severe inbreeding depression and long reproductive cycles generally prohibit its use. However, three generations of selfing in silver birch (Betula pendula Roth) were obtained by forcing trees to flowering under greenhouse conditions. Hybrids were produced by crossing first-, second and third-generation selfed lines. The effects of different levels of parental inbreeding on the growth performance of hybrid families were observed in a 9-year-old field progeny test. Also, provenance crosses were carried out between selfed lines from different parts of Finland and several other European countries. Observations of growth performance of the provenance hybrids were made in the same trial. The results indicated that the mean stem volumes were significantly different between classes of parental in breeding coefficients (FP) (P<0.0001), and were positively correlated with FP (r=0.9106, P<0.05). Within-family variation of the hybrid families decreased with an increase of FP. The performance of the provenance crosses between parents at a relatively close distance did not depart significantly from the standard controls. However, when the cross distance was extended far to the south, hybrids grew faster, indicating either higher heterozygosity or an extended growth period.  相似文献   

13.
Comparative genetic mapping in interspecific pedigrees presents a powerful approach to study genetic differentiation, genome evolution and reproductive isolation in diverging species. We used this approach for genetic analysis of an F1 hybrid of two Eucalyptus tree species, Eucalyptus grandis (W. Hill ex Maiden.) and Eucalyptus globulus (Labill.). This wide interspecific cross is characterized by hybrid inviability and hybrid abnormality. Approximately 20% of loci in the genome of the F1 hybrid are expected to be hemizygous due to a difference in genome size between E. grandis (640 Mbp) and E. globulus (530 Mbp). We investigated the extent of colinearity between the two genomes and the distribution of hemizygous loci in the F1 hybrid using high-throughput, semi-automated AFLP marker analysis. Two pseudo-backcross families (backcrosses of an F1 individual to non-parental individuals of the parental species) were each genotyped with more than 800 AFLP markers. This allowed construction of de novo comparative genetic linkage maps of the F1 hybrid and the two backcross parents. All shared AFLP marker loci in the three single-tree parental maps were found to be colinear and little evidence was found for gross chromosomal rearrangements. Our results suggest that hemizygous AFLP loci are dispersed throughout the E. grandis chromosomes of the F1 hybrid.Communicated by O. Savolainen  相似文献   

14.
Growth retardant activity of paclobutrazol enantiomers in wheat seedlings   总被引:2,自引:0,他引:2  
The resolved enantiomers of paclobutrazol appeared to have different primary modes of action as plant growth retardants in rht3 (tall) wheat seedlings. 2S,3S-Paclobutrazol reduced shoot growth more effectively than root growth, whereas the opposite was the case with the 2R,3R-enantiomer. Low concentrations (0.03–1.0 M) of 2S,3S-paclobutrazol specifically inhibited gibberellin A1 (GA1) production in Rht3 (dwarf) seedlings without affecting shoot growth, confirming that inhibition of GA biosynthesis is the primary mode of action of this enantiomer. Reductions in shoot growth of rht3 (tall) wheat treated with 2S,3S-paclobutrazol were associated with reductions in GA1 content, an effect that could be reversed by gibberellic acid (GA3) application, showing that GAs are important regulators of light-grown shoot growth in wheat. The inhibition of root growth of wheat seedlings following treatment with 2R,3R-paclobutrazol was associated with a decline in de novo synthesis of major sterols, a decrease in stigmasterol: sitosterol ratio and an accumulation of the 14-methyl sterol, obtusifoliol. Concentrations >3 M 2S,3S-paclobutrazol also affected de novo sterol production in wheat roots, suggesting that root growth is more responsive to interference with sterol than GA biosynthesis. There was a decline in abscisic acid (ABA) content in Rht3 (dwarf) shoots treated with relatively high concentrations of 2S,3S-paclobutrazol but no effect with its optical isomer.  相似文献   

15.
Anthracnose caused by Colletotrichum gloeosporioides is the most serious disease of lupins (Lupinus spp). A cross was made between cultivars Tanjil (resistant) and Unicrop (susceptible) in narrow-leafed lupin (L. angustifolius). Analysis of disease reaction data on the F2 population and on the resultant F7 recombinant inbred lines suggested that Tanjil contained a single dominant gene (Lanr1) conferring resistance to anthracnose. The parents and the representative F2 plants were used to generate molecular markers liked to the Lanr1 gene using the MFLP technique. A co-dominant MFLP polymorphism linked to the Lanr1 gene was identified as a candidate marker. The bands were isolated, re-amplified by PCR, cloned and sequenced. The MFLP polymorphism was converted into a co-dominant, sequence-specific, simple PCR-based marker. Linkage analysis by the computer program MAPMAKER indicated that the marker was 3.5 centiMorgans (cM) from the gene Lanr1. This marker is currently being implemented for marker assisted selection in the Australian National Lupin Breeding Program.  相似文献   

16.
Yellow mosaic virus, YMV, causes one of the most severe of biotic stresses in Vignas, an important group of pulse crops. The viral disease is transmitted through the white fly, Bemicia tabaci, and the yield of the plants is affected drastically. YMV-tolerant lines, generated from a single YMV-tolerant plant identified in the field within a large population of the susceptible cultivar T-9, were crossed with T-9, and F1, F2 and F3 progenies raised. The different generations were phenotyped for YMV-reaction by forced inoculation using viruliferous white flies. A monogenic recessive control of YMV-tolerance was revealed from the F2 segregation ratio of 3:1 (susceptible: tolerant), which was confirmed by the segregation ratio of the F3 families. Of 24 pairs of resistance gene analog (RGA) primers screened, only one pair, RGA 1F-CG/RGA 1R, was found to be polymorphic among the parents. Selected F2 individuals and F3 families were genotyped with the polymorphic RGA primer pair and the polymorphism was found to be linked with YMV-reaction. This primer pair amplified a 445bp DNA fragment only from homozygous tolerant and the heterozygous lines. The 445bp marker band was sequenced and named 'VMYR1'. The predicted amino acid sequence showed highly significant homology with the NB-ARC domain present in several gene products involved in plant disease resistance, nematode cell death and human apoptotic signaling. To the best of our knowledge, this is the first report of YMV-resistance linked DNA marker development in any crop species using segregating populations. This YMV-resistance linked marker is of potential commercial importance in resistance breeding of plants.  相似文献   

17.
Pericarp polypeptide profiles were analyzed at three ripening stages in the F1 hybrid and the F2 population from the cross between the accessions: LA1385 (Lycopersicon esculentum var. cerasiforme) and 804627 (L. esculentum, a homozygous genotype for the nor mutant). Six polymorphic polypeptides were observed in LA1385, while no polymorphic polypeptides among ripening stages was observed in 804627. On the other hand, some polypeptides in the F1 hybrid were not observed in the parents whereas others were present in both parental genotypes and were unnoticeable in the hybrid genotype. From a cluster analysis on the protein profiles of the F2 population, the differential expression of proteins allowed to distinguish mature green (MG) stage from the others two stages, while for breaker stage (BR) and red ripe stage, the genetic background was more important in forming groups. The differential expression of proteins could be associated with fruit morphology traits such as a 72 kDa polypeptide present in MG stage with fruit diameter, height and mass and a 47 kDa polypeptide found in BR with fruit shelf life.  相似文献   

18.
Summary In winter wheat (Triticum aestivum L.), the development of a methodology to estimate genetic divergence between parental lines, when combined with knowledge of parental performance, could be beneficial in the prediction of bulk progeny performance. The objective of this study was to relate F2 heterosis for grain yield and its components in 116 crosses to two independent estimates of genetic divergence among 28 parental genotypes of diverse origins. Genetic divergence between parents was estimated from (a) pedigree relationships (coefficients of kinship) determined without experimentation, and (b) quantitative traits measured in two years of field experimentation in Kansas and North Carolina, USA. These distances, designated (1 -r) and G, respectively, provided ample differentiation among the parents. The 116 F2 bulks were evaluated at four locations in Kansas and North Carolina in one year. Significant rank correlations of 0.46 (P = 0.01) and 0.44 (P = 0.01) were observed between G and grain yield and kernel number heterosis, respectively. Although (1 -r) was poorly associated with grain yield heterosis, G and midparent performance combined to account for 50% of the variation in F2 yields among crosses when (1 -r) was above the median value, whereas they accounted for only 9% of the variation among crosses when (1-r) was below the median. Midparent and (1 -r) had equal effects on F2 grain yield (R 2= 0.40) when G was greater than the median value. A breeding strategy is proposed whereby parents are first selected on the basis of performance per se and, subsequently, crosses are made between genetically divergent parents that have both large quantitative (G) and pedigree divergence (1 -r).Paper No. 12162 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, and Contribution No. 89-396-J of the Kansas Agricultural Experiment Station, Manhattan, KS 66506  相似文献   

19.
In order to study antioxidant status and physiological responses of wheat to cycocel (CCC) and bio fertilizers application under water limitation condition, a factorial experiment was conducted based on randomized complete block design with three replications in 2015. Treatments included water limitation in three levels [normal irrigation (I1) as control; moderate water limitation (I2) or irrigation withholding at 50% of heading stage; severe water limitation (I3) or irrigation withholding at 50% of booting stage]; four bio fertilizer levels [(no bio fertilizer (F0), seed inoculation by Azotobacter chrocoocum strain 5 (F1), Pseudomonas putida strain 186 (F2), Azotobacter?+?Pseudomonas (F3))] and four CCC levels [(without CCC as control (C0), application of 400 (C1), 800 (C2) and 1200 (C3) mg/l)]. The results showed that water limitation decreased the chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, stomata conductance, leaf area index (LAI) and relative water content of wheat, but activity of catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) enzymes and proline content were increased. Similar results were observed in CAT, POD and PPO activities due to bio fertilizers and CCC application. Besides the water limitation effects, CCC-treated plants displayed a significant decrease in stomata conductance and LAI. Generally, it was concluded that the application of bio fertilizers and CCC can be a proper tool for increasing wheat yield under water limitation.  相似文献   

20.
 We report the genetic mapping of Dwf2, a dominant gibberellic acid (GA3)-insensitive dwarfing gene which has been previously described to cause a very short growth habit in barley (Hordeum vulgare) mutant ‘93/B694’. Using RFLP and microsatellite markers we performed segregation analysis in an F2 population comprising 86 individuals developed from a cross of ‘93/B694’ (Dwf2) with ‘Bonus M2’ (dwf2). Dwf2 was mapped on the short arm of barley chromosome 4H proximal to microsatellite marker XhvOle (5.7 cM) and distal to RFLP marker Xmwg2299 (18.3 cM). The genetic localization of the Dwf2 gene at a homoeologous position to the multiallelic Rht-B1 and Rht-D1 loci in wheat suggests synteny of GA-insensitive dwarfing genes within the Triticeae. Moreover, the extremely prostrate growth habit exhibited in barley ‘93/B694’ (Dwf2) resembles that of wheat plants carrying the genes Rht-B1c (Rht3) or Rht-D1c (Rht10). Received: 1 July 1998 / Accepted: 17 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号