首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John L. Stoddart 《Planta》1984,161(5):432-438
Growth parameters were determined for tall (rht3) and dwarf (Rht3) seedlings of wheat (Triticum aestivum L.). Plant statures and leaf length were reduced by 50% in dwarfs but root and shoot dry weights were less affected. Leaves of dwarf seedlings had shorter epidermal cells and the numbers of cells per rank in talls and dwarfs matched the observed relationships in overall length. Talls grew at twice the rate of dwarfs (2.3 compared with 1.2 mm h-1). [3H]Gibberellin A1 ([3H]GA1) was fed to seedlings via the third leaf and metabolism was followed over 12 h. Immature leaves of tall seedlings transferred radioactivity rapidly to compounds co-chromatographing with [3H]gibberellin A8 ([3H]GA8) and a conjugate of [3H]GA8, whereas leaves of dwarf seedlings metabolised [3H]GA1 more slowly. Roots of both genotypes produced [3H]GA8-like material at similar rates. Isotopic dilution studies indicated a reduced 2-hydroxylation capacity in dwarfs, but parallel estimates of the endogenous GA pool size, obtained by radioimmunoassay, indicated a 12–15 times higher level of GA in the dwarf immature leaves. Dwarfing by the Rht3 gene does not appear to operate through enhanced, or abnormal metabolism of active gibberellins and the act of GA metabolism does not bear an obligate relationship to the growth response.Abbreviations GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

2.
Two crosses between Triticum turgidum wheat lines differing in their response to chlormequat (CCC) were tested. In the F2 population of one cross, which was segregating for the Rht1 dwarfing allele, each plant was cloned by separation of two tillers, one of which was treated with CCC. The tall (rht1/rht1) and the intermediate (Rht1/rht1) genotypes showed a greater response to CCC than the semi-dwarf (Rht1/Rht1) genotype, as expressed by culm length and date of ear emergence. The F3 families of another cross and their two semi-dwarf parents were grown in a three-replicated field test in paris of rows, one of which was treated with CCC. In one of the parents and in 1/4 of the F3 families CCC induced a wide-angled tiller growth, suggesting a monogenic control of this growth habit in response to CCC.Based on an M.Sc. thesis presented by the senior author to the Faculty of Agriculture of The Hebrew University of Jerusalem.  相似文献   

3.
In near-isogenic lines of winter wheat (Triticum aestivum L. cv. Maris Huntsman) grown at 20° C under long days the reduced-height genes, Rht1 (semi-dwarf) and Rht3 (dwarf) reduced the rate of extension of leaf 2 by 12% and 52%, respectively, compared with corresponding rht (tall) lines. Lowering the growing temperature from 20° to 10° C reduced the rate of linear extension of leaf 2 by 2.5-fold (60% reduction) in the rht3 line but by only 1.6-fold (36% reduction) in the Rht3 line. For both genotypes, the duration of leaf expansion was greater at the lower temperature so that final leaf length was reduced by only 35% in the rht3 line and was similar in the Rht3 line at both temperatures. Seedlings of the rht3 (tall) line growing at 20° C responded positively to root-applied gibberellin A1 (GA1) in the range 1–10 μM GA1; there was a linear increase in sheath length of leaf 1 whereas the Rht3 (dwarf) line remained unresponsive. Gibberellins A1, 3, 4, 8, 19, 20, 29, 34, 44 and 53 were identified by full-scan gas chromatography-mass spectrometry in aseptically grown 4-d-old shoots of the Rht3 line. In 12-d-old seedlings grown at 20° C, there were fourfold and 24-fold increases in the concentration of GA1 in the leaf expansion zone of Rht1 and Rht3 lines, respectively, compared with corresponding rht lines. Although GA3 was present at a similar level to GA1 in the rht3 (tall) line it accumulated only fivefold in the Rht3 (dwarf) line. The steady-state pool sizes of endogenous GAs were GA19 ? GA20 = GA1 in the GA-responsive rht3 line whereas in the GA non-responsive Rht3 line the content of GA19≈ GA20 ? GA1. It is proposed that one of the consequences of GA1 action is suppression of GA19-oxidase activity such that the conversion of GA19 to GA20 becomes a rate-limiting step on the pathway to GA1 in GA-responsive lines. In the GA-non-responsive Rht lines it is suggested that GA19 oxidase is not downregulated to the same extent and GA1 accumulates before the next rate-limiting step on the pathway, its 2β-hydroxylation to GA8. The steady-state pool sizes of GA19, 20, 1, 3 and 8 were similar in developmentally equivalent tissues of the rht3 (tall) line growing at 10° C and 20° C despite a 2.5-fold difference in the rate of leaf expansion. In contrast, in the Rht3 (dwarf) line, the extent of accumulation of GA1 reflected the severity of the phenotype at the two temperatures with slower growing tissues accumulating less, not more, GA1. These results are interpreted as supporting the proposed model of regulation of the GA-biosynthetic pathway rather than previous suggestions that GA1 accumulates in GA-insensitive dwarfs as a consequence of reduced growth rates.  相似文献   

4.
Near-isogenic wheat (Triticum aestivum L.) lines differing in height-reducing (Rht) alleles were used to investigate the effects of temperature on endogenous gibberellin (GA) levels and seedling growth response to applied GA3. Sheath and lamina lengths of the first leaf were measured in GA treated and control seedlings, grown at 11, 18, and 25°C, of six Rht genotypes in each of two varietal backgrounds, cv Maris Huntsman and cv April Bearded. Endogenous GA1 levels in the leaf extension zone of untreated seedlings were determined by gas chromatography-mass spectrometry with a deuterated internal standard in the six Maris Huntsman Rht lines grown at 10 and 25°C. Higher temperature increased leaf length considerably in the tall genotype, less so in the Rht1 and Rht2 genotypes, and had no consistent effect on the Rht1+2, Rht3 and Rht2+3 genotypes. In all genotypes, endogenous GA1 was higher at 25°C than at 10°C. At 10°C the endogenous GA1 was at a similar level in all the genotypes (except Rht2+3). At 25°C it increased 1.6-fold in the tall genotype, 3-fold in Rht1 and Rht2, 6-fold in Rht3, and 9-fold in Rht1+2. Likewise, the genotypic differences in leaf length were very conspicuous at 25°C, but were only slight and often unsignificant at 11°C. The response of leaf length to applied GA3 in the Rht1, Rht2, and Rht1+2 genotypes increased significantly with lowering of temperature. These results suggest the possibility that the temperature effect on leaf elongation is mediated through its effect on the level of endogenous GA1 and that leaf elongation response to endogenous or applied GAs is restricted by the upper limits set by the different Rht alleles.  相似文献   

5.
Near-isogenic wheat lines differing in height-reducing (Rht) alleles, in each of two cultivars, were used to investigate the effects of light intensity and of their interaction with temperature and GA3 application, on the elongation of the coleoptile and the first seedling leaf. Darkness caused a conspicuous increase in the lengths of the coleoptile and of the sheath and lamina of the first leaf, in GA3 treated and untreated seedlings of all genotypes grown at 11 and 25°C. The genotype effects and the effects of light intensity and GA3 application on leaf length were ascribed entirely to their effects on the rate of leaf elongation since the duration of leaf elongation was not affected by these factors. Temperature elevation from 11 to 25°C caused a 55% shortening of the duration of leaf elongation and a concomitant increase in elongation rate, which diminished with increased genotypic dwarfness. Accordingly, temperature elevation resulted in a significant reduction in leaf-length of the light-grown dwarf genotypes and the dark-grown dwarf and semi-dwarf genotypes. It is suggested that this temperature × light × genotype interaction effect is due to environmental dependent upper limits of elongation rate set by the Rht alleles.Abbreviations PAR Photosynthetic Active Radiation  相似文献   

6.
The second leaf of wheat was used as a model system to examinethe effects of the Rht3 dwarfing gene on leaf growth. Comparedto the rht3 wild type, the Rht3allele decreased final leaf length,surface area and dry mass by reducing the maximum growth rates,but without affecting growth duration. Gibberellic acid (GA3)increased final leaf length and maximum growth rate in the rht3wild type, but was without effect on the Rht3 mutant, whichis generally regarded as being non-responsive to gibberellin(GA). Paclobutrazol, an inhibitor of GA biosynthesis, decreasedfinal leaf length and maximum growth rate in the rht3 wild typeto values similar to those in the untreated Rht3 mutant. NeitherGA3 nor paclobutrazol affected the duration of leaf growth.The decrease in leaf length was produced by reduction of celllength rather than cell number. The maximum relative elementalgrowth rate (REGR) for cell extension was essentially the samein all treatments, as was the time between the cells leavingthe meristem and achieving maximum extension rate. The differencesbetween the genotypes and treatments were all almost entirelydue to differences in the time taken from the attainment ofmaximum REGR of cell extension to the cessation of extension.This was reflected in the length of the extension zone, whichwas approximately 6–8 per cent of final leaf length. Theeffects of the Rht3 allele, GA3 and paclobutrazol all appearto be on the processes which promote the cessation of cell elongation. Key words: Cell extension, gibberellin, leaf growth, Rht3 gene, Triticum, wheat  相似文献   

7.
Masami Ogawa  Hiroko Kitamura 《Planta》1980,147(5):495-499
4-Ethoxy-1-(p-tolyl)-s-triazine-2,6(1H,3H)-dione (TA) promoted mesocotyl growth in dark-grown rice (Oryza sativa L.) seedlings. In cultivars of the japonica type TA alone showed a small promotive effect and TA+gibberellic acid(GA3) had a marked synergistic effect, while in other cultivars, mostly of the indica type, TA alone showed a great promotive effect and TA+GA3 had only an additive effect. In cv. Nato, a typical representative of cultivars showing the second type of response, the concentration of TA giving the greatest growth promotion was around 0.1–0.2 mM. In Nato seedlings treated with TA at 0.1 mM, the mesocotyls continued to elongate for 6 days and reached about 75 mm in length, while the mesocotyls of control seedlings grew to a maximum of about 10 mm and growth was limited to the first 3 days after planting. The TA-induced mesocotyl elongation was mainly the consequence of increased cell multiplication in the meristematic area immediately below the coleoptilar node. GA3, abscisic acid (ABA) and ethylene also stimulated mesocotyl growth in dark-grown Nato seedlings but their effects were much smaller than those of TA. ABA, like GA3, had an additive effect with TA, but ethylene suppressed the effect of TA and resulted in increased lateral expansion in the upper region of the mesocotyls of TA-treated seedlings.Abbreviations ABA abscisic acid - GA(s) gibberellin(s) - GA3 gibberellic acid - TA 4-ethoxy-1-(p-tolyl)-s-triazine-2,6(1H,3H)-dione Part 5 in the series Plant Growth-regulating Activities of Isourea Derivatives and Related Compounds; Part 4=Ogawa et al. (1978)  相似文献   

8.
The effects of low temperature and the Rht3 dwarfing gene onthe dynamics of cell extension in leaf 2 of wheat were examinedin relation to gibberellin (GA) content and GA-responsivenessof the extension zone. Leaf 2 of wild-type (rht3) wheat closelyresembled that of the Rht3 dwarf mutant when seedlings weregrown at 10C. The maximum relative elemental growth rate (REGR)within the extension zone in both genotypes was lower at 10Cthan at 20C, but the position with respect to the leaf basewas unaffected by temperature. The size of the extension zoneand epidermal cell lengths were similar in both genotypes at10C. Growth at 20C, instead of 10C, increased the lengthof the extension zone beyond the point of maximum REGR in thewild type, but not in the Rht3 mutant. Increasing temperatureresulted in longer epidermal cells in the wild type. Treatingwild-type plants at 10C with gibberellic acid (GA3) also increasedthe length of the extension zone, but the Rht3 mutant was GA-non-responsive.However, the concentrations of endogenous GA1 and GA3 remainedsimilar across the extension zone of wild-type plants grownat both temperatures, despite large differences in leaf growthrates. The period of accelerating REGR as cells enter the extensionzone, and the maximum REGR attained, are apparently not affectedby GA. It is proposed that GA functions as a stimulus for continuedcell extension by preventing cell maturation in the region beyondmaximum REGR and that low temperature increases the sensitivitythreshold for GA action. Key words: Cell extension, gibberellin, Rht3 dwarfing gene, temperature, wheat leaf  相似文献   

9.
Rht3-containing gibberellic acid (GA3) insensitive deembryonated wheat (Triticum aestivum L. var Cappelle Desprez × Minister Dwarf) aleurone, that can be made responsive to GA3 by low temperature, can also be rendered GA3 sensitive by preincubation with indoleacetic acid (IAA). The IAA-induced response of the dwarf selection is concentration-dependent, relatively sensitive, and similar in magnitude to that induced by low temperature. Other auxins also induce GA3 responsiveness to a greater or lesser degree. IAA has no apparent effect on the wild type (rht, tall) selection.  相似文献   

10.
The roles of gibberellic acid (GA3) and fusicoccin (FC) in the elongation growth and acidification of the medium by excised hypocotyl sections of lettuce (Lactuca sativa L.) were investigated. Hypocotyl sections incubated in buffer without GA3 elongate optimally at pH 4.0–4.25 while sections incubated with GA3 show the same growth between pH 4.25 and 6.0. Preincubation of sections at pH 6.0 for 6 h does not affect the subsequent elongation response to acidic medium (pH 4.25); however, the sections become refractory to further acid treatment after their initial burst of growth in response to pH 4.25. Sections made refractory to acid are responsive to GA3 application, however, and the rate of growth in response to GA3 of sections pretreated for 6 h at pH 4.25 is 85% of that of sections pretreated at pH 6.0. Although preincubation of sections for 48 h in medium at pH 6.0 abolishes the GA3 response, it does not affect the response to buffer at pH 4.25. FC stimulates elongation growth in letuce hypocotyls at an optimal concentration of 1 M, and pretreatment of sections at pH 4.25 does not affect this elongation response. Although both GA3 and FC increase elongation of the section, neither causes appreciable acidification of the medium. Addition of KCl or NaCl to FC-treated sections causes rapid medium acidification but addition of salts to GA3-treated tissue does not cause acidification. Abrasion of the hypocotyl to remove the cuticle does not enhance acidification of the medium by the sections nor deos it affect elongation of the sections in response to GA3 or FC. Medium acidification by the sections is not a passive process since it is abolished both by low temperature (2° C) and metabolic inhibitors (carbonyl cyanide-m-chlorophenyl-hydrazone, azide). The acidification of the medium by barley (Hordeum vulgare L.) roots in response to FC is also dependent on the presence of KCl. We conclude that the acid-growth hypothesis does not explain GA3- or FC-induced elongation in lettuce hypocotyls.Abbreviations FC tusicoccin - GA3 gibberellic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - CCCP carbonyl cyanide-m-chlorophenyl-hydrazone - MES 2-(N-morpholino)ethanesulphonic acid - Tris tris-(hydroxymethyl)aminomethane  相似文献   

11.
Growth retardant activity of paclobutrazol enantiomers in wheat seedlings   总被引:2,自引:0,他引:2  
The resolved enantiomers of paclobutrazol appeared to have different primary modes of action as plant growth retardants in rht3 (tall) wheat seedlings. 2S,3S-Paclobutrazol reduced shoot growth more effectively than root growth, whereas the opposite was the case with the 2R,3R-enantiomer. Low concentrations (0.03–1.0 M) of 2S,3S-paclobutrazol specifically inhibited gibberellin A1 (GA1) production in Rht3 (dwarf) seedlings without affecting shoot growth, confirming that inhibition of GA biosynthesis is the primary mode of action of this enantiomer. Reductions in shoot growth of rht3 (tall) wheat treated with 2S,3S-paclobutrazol were associated with reductions in GA1 content, an effect that could be reversed by gibberellic acid (GA3) application, showing that GAs are important regulators of light-grown shoot growth in wheat. The inhibition of root growth of wheat seedlings following treatment with 2R,3R-paclobutrazol was associated with a decline in de novo synthesis of major sterols, a decrease in stigmasterol: sitosterol ratio and an accumulation of the 14-methyl sterol, obtusifoliol. Concentrations >3 M 2S,3S-paclobutrazol also affected de novo sterol production in wheat roots, suggesting that root growth is more responsive to interference with sterol than GA biosynthesis. There was a decline in abscisic acid (ABA) content in Rht3 (dwarf) shoots treated with relatively high concentrations of 2S,3S-paclobutrazol but no effect with its optical isomer.  相似文献   

12.
AC 94,377 caused elongation of seedlings of Triticum aestivum, Triticum durum, and Hordeum vulgare when applied to the soil, or the soil plus seed at planting. Affected were the leaf sheathes and the coleoptiles, and at high compound rates there was premature elongation of the stem internodes. As exemplified by the response of T. aestivum var. Fidel, the influence on coleoptile elongation was greatest under conditions whereby the coleoptile was naturally stimulated to elongate, i.e., when growth was in the dark and temperatures were cool (15°C). All of the stem internodes were capable of elongation except the one below the coleoptile node. The effect on leaf sheath elongation was prolonged when compared to activity of gibberellic acid.Several varieties of the three cereal species were examined in the greenhouse for sensitivity to AC 94,377 in order to evaluate the extent of the response. All of the barley varieties examined were sensitive to AC 94,377, elongating regardless of the planting conditions. Two such conditions were established, including incubation under warm (28/20°C) conditions following planting the grains 1 cm deep, and incubation under cool (22/16°C) conditions following planting the grains 6 cm deep. Wheat varieties distributed into two general categories, those which were sensitive and those which were not. The insensitivity correlated well to the presence of the reduced height (Rht) and GA-insensitive (Gai) genes in Triticum aestivum and Triticum durum, respectively. Thus, AC 94,377 can be used conveniently to evaluate varietal lines for the presence of this phenotype. This correlation also lends support to the notion that the Rht/Gai mutations in wheat are either at the level of a gibberellin receptor or at a step in the signal transduction pathway.  相似文献   

13.
The relationship between temperature and sensitivity to gibberellin A3 (GA3) was studied in lettuce seedlings (Lactuca sativa L. cv. Arctic). Dose/response curves for hypocotyl elongation (10-4 mol l-1 to 10-8 mol l-1) were constructed for a range of temperatures and the slope of the linear portion of the plots used as an indication of the sensitivity to GA3. Hypocotyls were unresponsive to GA3 below 13°C but above this temperature sensitivity increased linearly. Plots of growth rate against temperature had inflexions between 12°C and 13°C, with slopes above this point which increased with increasing GA3 concentration. The Q10 value for response increased in a similar manner. Reaction rates of NAD-dependent malate dehydrogenase and peroxidase extracted from hypocotyls varied linearly with temperature whilst nonspecific tetrazolium reduction, a membrane based activity, showed an abrupt rate change above 14°C. Pre-exposure to GA3 had no effect on the temperature responses of soluble or particulate enzymes.Abbreviation GA3 gibberellin A3  相似文献   

14.
A comparison has been made of the relative effectiveness of light quality and quantity and gibberellic acid (GA3) treatment on the elongation growth of the coleoptile and the first foliage leaf in durum wheat (Triticum durum Desf. cvs. Cappelli and Creso). The cultivar Creso is a shortstrawed variety carrying the Gai 1 gene on chromosome 4A, which influences both plant height and insensitivity to applied gibberellins. The main conclusions are as follows: 1) coleoptile elongation growth appears to be modulated via the fluencerate-dependent action of a blue-light receptor and via a low energy response of phytochrome; 2) the inhibition of first-foliage-leaf growth depends on the operation of a single blue-light-responsive photoreceptor; 3) high energy blue light produces the same inhibitory effect on the two wheat cultivars, whereas at relatively low fluences of white and blue light, the cultivar Creso is more sensitive; 4) the insensitivity to applied GA3 exerted by the gene Gai 1 in Creso is independent of light; 5) in Cappelli, the action of light on coleoptiles appears to be independent of the applied GA3, whereas the hormone is able to change the pattern of growth inhibition of the first-foliage-leaf.Abbreviations BL blue light - FR far-red light - GA gibberellin - GA3 gibberellic acid - R red light - WL white light  相似文献   

15.
Growth of carrot and radish seedlings in nutrient culture was inhibited by pretreatment with three calmodulin inhibitors. There was little selective effect on specific organs, shoots, tap root and fibrous roots over a range of concentrations. Although pretreatment with CaCl2 (0.5 mM) did not affect growth of untreated seedlings, it partially reduced the inhibitory effects of trifluoperazine over the concentration range 0.01–0.05 mM. Trifluoperazine reduced the growth of GA3-treated seedlings but did not overcome the modifying effect of GA3 in favouring shoot/root ratio; ABA exacerbated its inhibitory effect on overall seedling growth and particularly on tap root development.Abbreviations GA3 gibberellic acid - ABA abscisic acid - CaCl2 calcium chloride - GAs gibberellins - Tfp trifluoperazine  相似文献   

16.
Gibberellin A4 (GA4) is biologically active in Salix pentandra and is able to induce stem elongation in seedlings grown under short day (SD) conditions, as well as in seedlings grown under long day (LD) conditions and treated with a growth retardant BX-112. [3H2]GA4 and [2H2]GA4 were applied to seedlings and leaf and stem explants of S. pentandra, and metabolites were studied using HPLC and GC-MS. After application of [3H2]GA4 to seedlings of S. pentandra, one of the three main radioactive metabolites in the free acid fraction had retention properties similar to GA1. Using [2H2]GA4, this compound was identified by GC-MS with SIM as [2H2]GA1 both from short day-grown and BX-112-treated seedlings, as well as in leaf and stem explants. After injection of GA4 into a mature leaf, GA1 was mainly found in the elongating stem tissue. Thus, the possibility that the biological activity of GA4 in Salix is due to its conversion to GA1 cannot be excluded.  相似文献   

17.
Summary The effect of 3-indoleacetic acid (IAA), 6-furfurylaminopurine (kinetin), and gibberellic acid (GA3) on germination of the orchid Comparettia falcata was evaluated in a factorial experiment (4×4×4) with Murashige and Skoog (1962) basal medium. It was established that seeds of this orchid could be maintained under aseptic conditions as long as the necessary nutrients and appropriate concentrations of growth regulators were provided. Of the three growth regulators used, IAA significantly decreased seed germination of Comparettia falcata. There was a synergistic effect in the kinetin:GA3 combination that produced a positive response in both percentage seed germination and development of seedlings. This study describes a single medium-based protocol able to achieve more than 160000 seedlings within 21 wk, starting from a single capsule, sufficient for both large-scale propagation and in vitro conservation of this threatened orchid.  相似文献   

18.
We examined the physiological effects of brassinosteroids (BRs) on early growth of Arabidopsis. Brassinazole (Brz), a BR biosynthesis inhibitor, was used to elucidate the significance of endogenous BRs. It inhibited growth of roots, hypocotyls, and cotyledonous leaf blades dose-dependently and independent of light conditions. This fact suggests that endogenous BRs are necessary for normal growth of individual organs of Arabidopsis in both photomorphogenetic and skotomorphogenetic programs. Exogenous brassinolide (BL) promoted hypocotyl elongation remarkably in light-grown seedlings. Cytological observation disclosed that BL-induced hypocotyl elongation was achieved through cell enlargement rather than cell division. Furthermore, a serial experiment with hormone inhibitors showed that BL induced hypocotyl elongation not through gibberellin and auxin actions. However, a synergistic relationship of BL with gibberellin A3 (GA3) and indole-3-acetic acid (IAA) was observed on elongation growth in light-grown hypocotyls, even though gibberellins have been reported to be additive to BR action in other plants. Taken together, our results show that BRs play an important role in the juvenile growth of Arabidopsis; moreover, BRs act on light-grown hypocotyl elongation independent of, but cooperatively with, gibberellins and auxin.  相似文献   

19.
The metabolism and growth-promoting activity of gibberellin A20 (GA20) were compared in the internode-length genotypes of pea, na le and na Le. Gibberellin A29 and GA29-catabolite were the major metabolites of GA20 in the genotype na le. However, low levels of GA1, GA8 and GA8-catabolite were also identified as metabolites in this genotype, confirming that the le allele is a leaky mutation. Gibberellin A20 was approximately 20 to 30 times as active in promoting internode growth of genotype na Le as of genotype na le. However, the levels of the 3-hydroxylated metabolite of GA20, GA8 (2-hydroxy GA1), were similar for a given growth response in both genotypes. In each case a close linear relationship was observed between internode growth and the logarithm of GA8 levels. A similar relationship was found on comparing GA20 metabolism in the three genotypes le d, le and Le. The former mutation results in a more severe dwarf phenotype than the le allele (which has previously been shown to reduce the 3-hydroxylation of GA20 to GA1). These results indicate that GA20 has negligible intrinsic activity and support the contention that GA1 is the only GA active per se in promoting stem growth in pea.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

20.
Gibberellin A4 (GA4) was identified for the first time in the garden pea (Pisum sativum) L.), by gas chromatography-mass spectrometry. However, in wild-type shoots the level of GA4 was only about 6% of the level of GA1, and it is therefore unlikely that GA4 plays a major role per se in the control of pea stem elongation. In shoots of the le mutant, GA4 was not detected, while the level of GA9 was approximately twice that found in the wild-type. The le mutation also markedly reduced the elongation response to applied GA9. It appears, therefore, that in Pisum the le mutation blocks the 3-hydroxylation of GA9 to GA4, in addition to the 3-hydroxylation of GA20 to GA1. In contrast, the le mutation did not reduce the response to applied GA5, suggesting the step GA5 to GA3 is not catalysed by the enzyme controlled by the Le gene. The step GA5 to GA3 was confirmed in peas by metabolite analysis after treatment with deuterated GA5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号