首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPα), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPα gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPα expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPα on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.  相似文献   

2.
3.
4.
In joint diseases of both the inflammatory (rheumatoid arthritis, or RA) or the degenerative variety (osteoarthritis, or OA), matrix metalloproteinases (MMPs) are essential mediators of irreversible tissue destruction. MMP-9 is secreted as a stable, inactive zymogen and is proteolytically converted to the active enzyme. To understand the activation mechanism of MMP-9 in joint diseases, the process was investigated in serum-free cocultures of human articular chondrocytes and macrophages. Macrophages extensively expressed and secreted pro-MMP-9 whereas chondrocytes failed to produce the enzyme. However, efficient activation of pro-MMP-9 required soluble and membrane-associated chondrocyte proteinases. Two alternative activation pathways mainly involved MMPs and, marginally, serine or cysteine proteinases. MT1-MMP (MMP-14), the only MT-MMP expressed in chondrocytes, converted pro-MMP-13 which, in turn, cleaved pro-MMP-9. Alternatively, pro-MMP-9 was activated less efficiently by MMP-3, which was converted by autocatalysis or by serine or cysteine proteinases. Both pathways were triggered by chondrocytes from OA, but not normal joints. Therefore, articular chondrocytes are not innocent bystanders in joint diseases. They not only produce destructive enzymes guided by environmental cues but also they can instruct inflammatory cells or cells from surrounding tissues to do so by converting in several ways zymogens produced but not activated by these cells themselves.  相似文献   

5.
6.
Foci of chondrocyte hypertrophy that commonly develop in osteoarthritic (OA) cartilage can promote dysregulated matrix repair and pathologic calcification in OA. The closely related chemokines IL-8/CXCL8 and growth-related oncogene alpha (GROalpha)/CXCL1 and their receptors are up-regulated in OA cartilage chondrocytes. Because these chemokines regulate leukocyte activation through p38 mitogen-activated protein kinase signaling, a pathway implicated in chondrocyte hypertrophic differentiation, we tested whether IL-8 and GROalpha promote chondrocyte hypertrophy. We observed that normal human and bovine primary articular chondrocytes expressed both IL-8Rs (CXCR1, CXCR2). IL-8 and the selective CXCR2 ligand GROalpha (10 ng/ml) induced tissue inhibitor of metalloproteinase-3 expression, markers of hypertrophy (type X collagen and MMP-13 expression, alkaline phosphatase activity), as well as matrix calcification. IL-8 and the selective CXCR2 ligand GROalpha also induced increased transamidation activity of chondrocyte transglutaminases (TGs), enzymes up-regulated in chondrocyte hypertrophy that have the potential to modulate differentiation and calcification. Under these conditions, p38 mitogen-activated protein kinase pathway signaling mediated induction of both type X collagen and TG activity. Studies using mouse knee chondrocytes lacking one of the two known articular chondrocyte-expressed TG isoenzymes (TG2) demonstrated that TG2 was essential for murine GROalpha homologue KC-induced TG activity and critically mediated induction by KC of type X collagen, matrix metalloproteinase-13, alkaline phosphatase, and calcification. In conclusion, IL-8 and GROalpha induce articular chondrocyte hypertrophy and calcification through p38 and TG2. Our results suggest a novel linkage between inflammation and altered differentiation of articular chondrocytes. Furthermore, CXCR2 and TG2 may be sites for intervention in the pathogenesis of OA.  相似文献   

7.
Mechanical forces influence articular cartilage structure by regulating chondrocyte activity. Mechanical stimulation results in activation of an alpha5beta1 integrin dependent intracellular signal cascade involving focal adhesion kinase and protein kinase C, triggering the release of interleukin-4 from the cell. In normal HAC the response to physiological mechanical stimulation is characterised by increased levels of aggrecan mRNA and a decrease in levels of mRNA for matrix metalloproteinase 3 (MMP-3), the net result of which would be to maintain and optimise cartilage structure and function. This protective/anabolic response is not seen when chondrocytes from osteoarthritic cartilage are subjected to an identical mechanical stimulation regime. Following the observation that the neurotransmitter substance P is involved in chondrocyte mechanotransduction the present study was undertaken to establish potential roles for glutamate receptors in the control of chondrocyte mechanical responses. Using immunohistochemistry and RTPCR normal and OA chondrocytes are shown to express NR1 and NR2a subunits of the NMDA receptor. Addition of NMDA receptor agonists to chondrocytes in primary culture resulted in changes in membrane potential consistent with expression of functional receptors. NMDA receptor antagonists inhibited the hyperpolarisation response of normal chondrocytes to mechanical stimulation but had no effect on the depolarisation response of osteoarthritic chondrocytes to mechanical stimulation. These studies indicate that at least one subset of the NMDA receptor family of molecules is expressed in cartilage and may have important modulatory effects on mechanotransduction and cellular responses following mechanical stimulation. Indeed the results suggest that there is an alteration of NMDA receptor signalling in OA chondrocytes, which may be critical in the abnormal response of OA chondrocytes to mechanical stimulation. Thus NMDA receptors appear to be involved in the regulation of human articular chondrocyte responses to mechanical stimulation, and in OA, mechanotransduction pathways may be modified as a result of altered activation and function of these receptors.  相似文献   

8.
Proinflammatory cytokine such as interleukin (IL)-1β causes inflammation of articular cartilage. In this current study, we explored the chondroprotective effects of long noncoding RNA (lncRNA) MALAT-1 on cell proliferation, apoptosis, and matrix metabolism in IL-1β-induced inflammation in articular chondrocytes. Articular chondrocytes from knee joints of normal rats were isolated and cultured, followed by identification through observation of toluidine blue and COL II immunocytochemical stainings. The proliferation of chondrocytes at passage 2 was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The inflammatory chondrocytes induced by 10 ng/mL IL-1β were observed and identified by toluidine blue and COL II immunocytochemical stainings. pcDNA 3.1 and pcDNA-MALAT-1 were transfected in the chondrocytes. Ultrastructure of chondrocytes was observed by using a transmission electron microscope. The MTT assay was carried out to evaluate chondrocyte viability. Hoechst 33258 staining and flow cytometry were adopted to assess chondrocyte apoptosis. The chondrocytes at passage 2 with the biological characteristics of chondrocytes were used for subsequent experiments. In IL-1β-treated chondrocytes, the growth rate of chondrocytes slowed down, the cells became narrow and long, the vacuoles were seen in the cells, and the morphology of the chondrocytes was irregular. The toluidine blue staining and the immunohistochemical staining of COL II became weaker. In response to IL-1β induction, articular chondrocytes showed reduced MALAT-1 expression; moreover, obvious cartilage injury was observed with decreased chondrocyte viability and Col II expression and elevated chondrocyte apoptosis, MMP-13 expression, and p-JNK expression. With the treatment of pcDNA-MALAT-1, the cartilage injury was alleviated with increased chondrocyte viability and type II collagen (Col II) expression and reduced chondrocyte apoptosis, MMP-13 expression and p-JNK expression. Taken together these results, lncRNA MALAT-1 blocked the activation of the JNK signaling pathway; thereby, IL-1β-induced inflammation in articular chondrocytes was reduced with enhanced chondrocyte proliferation and suppressed chondrocyte apoptosis and extracellular matrix degradation.  相似文献   

9.

Background

Even though osteoarthritis (OA) is the most common musculoskeletal dysfunction, there are no effective pharmacological treatments to treat OA due to lack of understanding in OA pathology. To better understand the mechanism in OA pathogenesis and investigate its effective target, we analyzed miRNA profiles during OA pathogenesis and verify the role and its functional targets of miR-488.

Results

Human articular chondrocytes were obtained from cartilage of OA patients undergoing knee replacement surgery and biopsy samples of normal cartilage and the expression profile of miRNA was analyzed. From expression profile, most potent miR was selected and its target and functional role in OA pathogenesis were investigated using target validation system and OA animal model system. Among miRNAs tested, miR-488 was significantly decreased in OA chondrocytes Furthermore, we found that exposure of IL-1β was also suppressed whereas exposure of TGF-β3 induced the induction of miR-488 in human articular chondrocytes isolated from biopsy samples of normal cartilages. Target validation study showed that miR-488 targets ZIP8 and suppression of ZIP8 in OA animal model showed the reduced cartilage degradation. Target validation study showed that miR-488 targets ZIP8 and suppression of ZIP8 in OA animal model showed the reduced cartilage degradation.

Conclusions

miR-488 acts as a positive role for chondrocyte differentiation/cartilage development by inhibiting MMP-13 activity through targeting ZIP-8.  相似文献   

10.
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.  相似文献   

11.
Mitochondrial dysfunction in osteoarthritis   总被引:2,自引:0,他引:2  
In osteoarthritis (OA) a time or age dependent process leads to aberrant cartilage structure which is characterized by reduced number of chondrocytes, loss of existing cartilage extracellular matrix, the production of matrix with abnormal composition and pathologic matrix calcification. Because chondrocyte matrix synthesis and mineralization are modulated by the balance between ATP generation and consumption, the mechanism by which chondrocytes generate energy have been a topic of interest. The analysis of mitochondrial respiratory chain (MRC) activity in OA chondrocytes shows a significant decrease in complexes II and III compared to normal chondrocytes. On the other hand, mitochondrial mass is increased in OA, as demonstrated by a significant rise in CS activity. Furthermore, OA cells show a reduction in the mitochondrial membrane potential (deltapsim) as demonstrated by using the fluorescent probe JC-1. OA cartilage contains high number of apoptotic chondrocytes, and mitochondria play a key role in apoptosis. Interestingly, OA cartilages show markedly elevated Bcl-2 and caspasa-3 expression. This expression is also correlated with chondrocyte apoptosis and OA lesions. The pathogenesis of OA includes elaboration of increased amounts of NO as a consequence of up-regulation of chondrocyte-inducible NO synthase induced by IL-1, TNF-alpha and other factors. NO reduces chondrocyte survival and induces cell death with morphologic changes characteristic of chondrocyte apoptosis. NO reduces the activity of complex IV and decreases the deltapsim as measured as the ratio of red/green fluorescence. Furthermore, NO induces the mRNA expression of caspase-3 and -7, and it reduces the expression of mRNA bcl-2 and the bcl-2 protein synthesis. Some studies suggest that the chondrocyte mitochondria are specialized for calcium transport and are important in the calcification of the extracellular matrix. Mineral formation has been demonstrated in matrix vesicles (MV) and within mitochondria. Direct suppression of mitochondrial respiration promoted MV-mediated mineralization in chondrocytes. Regulation of MRC may be one of the signaling pathways by which NO modulates articular cartilage matrix biosynthesis and pathologic mineralization. After age 40, the incidence of OA in humans increases progressively with increasing age. Studies show a trend to statistic significance between the age and the reduction of complex I activity of human normal chondrocytes. However, the study of relation between age and deltapsim in normal chondrocytes do not demonstrate any significant correlation. It has been reported that as the number of population doublings increased, mitochondrial DNA was degraded and the number of mitochondria per chondrocyte decline. One approach for determining the role of mitochondria in OA is to determine the effects of the MRC inhibition and to compare them with the findings in OA. Inhibition of MRC with antimycin prevents the normal ability of TGFbeta to increase excretion of Pi, thereby worsening deposition of pathologic HA crystals. In chondrocytes, the inhibition of complex IV with NaN3 modified both the deltapsim and the survival of cells inducing apoptosis. Inhibition of complex I with rotenone increases the expression and synthesis of Bcl-2 and Cox-2, both effects are similar effects to produced by IL-1 in human chondrocytes.  相似文献   

12.
Human chondrocyte senescence and osteoarthritis   总被引:3,自引:0,他引:3  
Martin JA  Buckwalter JA 《Biorheology》2002,39(1-2):145-152
Although osteoarthritis (OA) is not an inevitable consequence of aging, a strong association exists between age and increasing incidence of OA. We hypothesized that this association is due to in vivo articular cartilage chondrocyte senescence which causes an age-related decline in the ability of the cells to maintain articular cartilage, that is, increasing age increases the risk of OA because chondrocytes lose their ability to replace their extracellular matrix. To test this hypothesis, we measured senescence markers in human articular cartilage chondrocytes from 27 donors ranging in age from one to 87 years. The markers included expression of the senescence-associated enzyme beta-galactosidase, mitotic activity measured by 3H-thymidine incorporation, and telomere length. beta-galactosidase expression increased with age (r=0.84, p=0.0001) while mitotic activity and mean telomere length declined (r=-0.774, p=0.001 and r=-0.71, p=0.0004, respectively). Decreasing telomere length was strongly correlated with increasing expression of beta-galactosidase and decreasing mitotic activity. These findings help explain the previously reported age related declines in chondrocyte synthetic activity and responsiveness to anabolic growth factors and indicate that in vivo articular cartilage chondrocyte senescence is responsible, at least in part, for the age related increased incidence of OA. The data also imply that people vary in their risk of developing OA because of differences in onset of chondrocyte senescence; and, the success of chondrocyte transplantation procedures performed to restore damaged articular surfaces in older patients could be limited by the inability of older chondrocytes to form new cartilage. New efforts to prevent the development or progression of OA might include strategies that delay the onset of chondrocyte senescence or replace senescent cells.  相似文献   

13.
14.
Effects of diacerein on biosynthesis activities of chondrocytes in culture   总被引:1,自引:0,他引:1  
The maintenance of articular cartilage integrity requires a balance between anabolic and catabolic processes which are under the control of chondrocytes. These cells are living in an anaerobic environment and normally do not divide. They are responsible for the continuous maintenance of the cartilage extracellular matrix (ECM). Although multiple factors are involved in the dynamic homeostasis of cartilage, increases in cytokines such as interleukin-1 (IL-1) are associated with a decrease in synthesis and an increase in degradation of the proteoglycans and collagens. Conversely, growth factors such as transforming growth factor-beta (TGF-beta) stimulate chondrocyte synthesis of collagens and proteoglycans, and reduce the activity of IL-1 stimulated metalloproteases, thus opposing the inhibitory and catabolic effects of IL-1. By its capability to reduce IL-1 effects and to stimulate TGF-beta expression in cultured articular chondrocytes, diacerein could favour anabolic processes in the OA cartilage and, hence may contribute to delay the progression of the disease.  相似文献   

15.
Osteoarthritis is one of the most common orthopedic diseases in elderly people who have lost their mobility. In this study,we observed abnormally high EGR1 expression in the articular cartilage of patients with osteoarthritis. We also found significantly high EGR1 expression in the articular cartilage of mice with destabilized medial meniscus (DMM)-induced osteoarthritis and 20-month-old mice. In vitro experiments indicated that IL-1β could significantly enhance EGR1 expression in primary mouse chondrocytes. EGR1 over-expression in chondrocytes using adenovirus could inhibit COl2A1 expression and enhance MMP9 and MMP13 expression. And silencing EGR1, using RNAi, had the opposite effects. Moreover, EGR1 over-expression accelerated chondrocyte hypertrophy in vitro, and EGR1 knockdown reversed this effect. We then explored the underlying mechanism. EGR1 over-expression increased Kruppel-Like Factor 5 (KLF5) protein level without influencing its synthesis. Enhanced EGR1 expression induced its integration with KLF5, leading to suppressed ubiquitination of KLF5. Moreover, EGR1 prompted β-catenin nuclear transportation to control chondrocyte hypertrophy. Ectopic expression of EGR1 in articular cartilage aggravated the degradation of the cartilage matrix in vivo. The EGR1 inhibitor, ML264, protected chondrocytes from IL-1β-mediated cartilage matrix degradation in vitro and DMM-induced osteoarthritis in vivo. Above all, we demonstrate the effect and mechanisms of EGR1 on osteoarthritis and provide evidence that the ML264 might be a potential drug for treating osteoarthritis in the future.  相似文献   

16.
MicroRNA-145 has been shown to regulate chondrocyte homeostasis. It seems that miR-145 is implicated in cartilage dysfunction in Osteoarthritis (OA). However, the functional role of miR-145 in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage has never been clarified. Here, we show that miR-145 expression increased in OA chondrocytes and in response to IL-1β stimulation. We confirm that mothers against decapentaplegic homolog 3 (Smad3), a key factor in maintaining chondrocyte homeostasis, is directly regulated by miR-145. Modulation of miR-145 affects the expression of Smad3 causing a change of its downstream target gene expression as well as IL-1β-induced ECM degradation in OA chondrocytes. This indicates that miR-145 contributes to impaired ECM in OA cartilage probably in part via targeting Smad3.  相似文献   

17.
Mechanical stimulation is critically important for the maintenance of normal articular cartilage integrity. Molecular events regulating responses of chondrocytes to mechanical forces are beginning to be defined. Chondrocytes from normal human knee joint articular cartilage show increased levels of aggrecan mRNA following 0.33 Hz mechanical stimulation whilst at the same time relative levels of MMP3 mRNA are decreased. This anabolic response, associated with membrane hyperpolarisation, is activated via an integrin-dependent interleukin (IL)-4 autocrine/paracrine loop. Work in our laboratory suggests that this chondroprotective response may be aberrant in osteoarthritis (OA). Chondrocytes from OA cartilage show no changes in aggrecan or MMP3 mRNA following 0.33 Hz mechanical stimulation. alpha5beta1 integrin is the mechanoreceptor in both normal and OA chondrocytes but downstream signalling pathways differ. OA chondrocytes show membrane depolarisation following 0.33 Hz mechanical stimulation consequent to activation of an IL1beta autocrine/paracrine loop. IL4 signalling in OA chondrocytes is preferentially through the type I (IL4alpha/cgamma) receptor rather than via the type II (IL4alpha/IL13R) receptor. Altered mechanotransduction and signalling in OA may contribute to changes in chondrocyte behaviour leading to increased cartilage breakdown and disease progression.  相似文献   

18.
Cartilage matrix homeostasis involves a dynamic balance between numerous signals that modulate chondrocyte functions. This study aimed at elucidating the role of the extracellular glucose concentration in modulating anabolic and catabolic gene expression in normal and osteoarthritic (OA) human chondrocytes and its ability to modify the gene expression responses induced by pro-anabolic stimuli, namely Transforming Growth Factor-β (TGF). For this, we analyzed by real time RT-PCR the expression of articular cartilage matrix-specific and non-specific genes, namely collagen types II and I, respectively. The expression of the matrix metalloproteinases (MMPs)-1 and -13, which plays a major role in cartilage degradation in arthritic conditions, and of their tissue inhibitors (TIMP) was also measured. The results showed that exposure to high glucose (30 mM) increased the mRNA levels of both MMPs in OA chondrocytes, whereas in normal ones only MMP-1 increased. Collagen II mRNA was similarly increased in normal and OA chondrocytes, but the increase lasted longer in the later. Exposure to high glucose for 24 h prevented TGF-induced downregulation of MMP-13 gene expression in normal and OA chondrocytes, while the inhibitory effect of TGF on MMP-1 expression was only partially reduced. Other responses were not significantly modified. In conclusion, exposure of human chondrocytes to high glucose, as occurs in vivo in diabetes mellitus patients and in vitro for the production of engineered cartilage, favors the chondrocyte catabolic program. This may promote articular cartilage degradation, facilitating OA development and/or progression, as well as compromise the quality and consequent in vivo efficacy of tissue engineered cartilage.  相似文献   

19.
Despite extensive studies on the multifaceted roles of morroniside, the main active constituent of iridoid glycoside from Corni Fructus, the effect of morroniside on osteoarthritis (OA) chondrocytes remains poorly understood. Here, we investigated the influence of morroniside on cultured human OA chondrocytes and a rat experimental model of OA. The results showed that morroniside enhanced the cell viability and the levels of proliferating cell nuclear antigen expression (PCNA), type II collagen and aggrecan in human OA chondrocytes, indicating that morroniside promoted chondrocyte survival and matrix synthesis. Furthermore, different doses of morroniside activated protein kinase B (AKT) and extracellular signal‐regulated kinase (ERK) in human OA chondrocytes, and in turn, triggered AKT/S6 and ERK/P70S6K/S6 pathway, respectively. The PI3K/AKT inhibitor LY294002 or the MEK/ERK inhibitor U0126 attenuated the effect of morroniside on human OA chondrocytes, indicating that the activation of AKT and ERK contributed to the regulation of morroniside in human OA chondrocytes. In addition, the intra‐articular injection of morroniside elevated the level of proteoglycans in cartilage matrix and the thickness of articular cartilage in a rat experimental model of OA, with the increase of AKT and ERK activation. As a consequence, morroniside has chondroprotective effect on OA chondrocytes, and may have the therapeutic potential for OA treatment.  相似文献   

20.
Osteoarthritis (OA) is characterized by articular cartilage degradation and joint inflammation. The purpose of the present study is to elucidate the role of the specific function of PRMT1 in chondrocytes and its association with the pathophysiology of OA. We observed that the expression of PRMT1 was apparently upregulated in OA cartilage, as well as in chondrocytes stimulated with IL-1β. Additionally, knockdown of PRMT1 suppressed interleukin 1 beta (IL-1β)-induced extracellular matrix (ECM) metabolic imbalance by regulating the expression of MMP-13, ADAMTS-5, COL2A1, and ACAN. Furthermore, silencing of PRMT1 dramatically declined the production of prostaglandin E2 (PGE2) and nitric oxide as well as the level of pro-inflammatory cytokine IL-6 and TNF-α. Mechanistic analyses further revealed that IL-1β-induced activation of the Hedgehog/Gli-1 signaling is suppressed upon PRMT1 knockdown. However, the effects of inhibition of PRMT1-mediated IL-1β-induced cartilage matrix degradation and inflammatory response in OA chondrocytes were obviously abolished by Hedgehog agonist Purmorphamine (Pur). Our data collectively suggest that silencing of PRMT1 exerts anti-catabolic and anti-inflammatory effects on IL-1β-induced chondrocytes via suppressing the Gli-1 mediated Hedgehog signaling pathway, indicating that PRMT1 plays a critical role in OA development and serves as a promising therapeutic target for OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号