首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two semisynthetic acetyl derivatives of the alkaloid sauroine from Huperzia saururus, monoacetyl sauroine, and diacetyl sauroine (DAS) were obtained and their chemical structures were analyzed by NMR. While monoacetyl sauroine is the typical product of acetylation, DAS is an unexpected derivative related to the keto‐enol formation of sauroine. Recordings of field excitatory post‐synaptic potentials from the CA1 region of rat hippocampal slices showed that only DAS acutely applied induced chemical long‐term potentiation (LTP) in a dose‐dependent manner with an EC50 of 1.15 ± 0.09 μM. This effect was blocked by 10 μM D(‐)‐2‐amino‐5‐phosphonopentanoic acid (AP5), suggesting dependence on the NMDA receptor. DAS significantly increased NMDA receptor‐dependent excitatory post‐synaptic currents without affecting α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor‐dependent currents. Repetitive administration of DAS improved visuo‐spatial learning in the Morris Water Maze. In slices from rats tested in the Morris Water Maze, LTP resulting from electrical synaptic stimulation was 2.5 times larger than in controls. Concentration of DAS measured in the brain after repetitive administration was 29.5 μM. We conclude that slices perfused with DAS display a robust NMDA receptor‐dependent chemical LTP. During chronic treatment, DAS enhances learning abilities through a metaplastic mechanism as revealed by the augmentation of LTP in slices. DAS, therefore, may be a promising compound as a nootropic therapeutic drug.

  相似文献   


2.
3.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


4.
Human immunodeficiency virus‐1 (HIV) is a public health issue and a major complication of the disease is NeuroAIDS. In vivo, microglia/macrophages are the main cells infected. However, a low but significant number of HIV‐infected astrocytes has also been detected, but their role in the pathogenesis of NeuroAIDS is not well understood. Our previous data indicate that gap junction channels amplify toxicity from few HIV‐infected into uninfected astrocytes. Now, we demonstrated that HIV infection of astrocytes results in the opening of connexin43 hemichannels (HCs). HIV‐induced opening of connexin43 HCs resulted in dysregulated secretion of dickkopf‐1 protein (DKK1, a soluble wnt pathway inhibitor). Treatment of mixed cultures of neurons and astrocytes with DKK1, in the absence of HIV infection, resulted in the collapse of neuronal processes. HIV infection of mixed cultures of human neurons and astrocytes also resulted in the collapse of neuronal processes through a DKK1‐dependent mechanism. In addition, dysregulated DKK1 expression in astrocytes was observed in human brain tissue sections of individuals with HIV encephalitis as compared to tissue sections from uninfected individuals. Thus, we demonstrated that HIV infection of astrocytes induces dysregulation of DKK1 by a HC‐dependent mechanism that contributes to the brain pathogenesis observed in HIV‐infected individuals.

  相似文献   


5.
6.
Olfactory sensory neurons (OSNs) are the initial site for olfactory signal transduction. Therefore, their survival is essential to olfactory function. In the current study, we demonstrated that while odorant stimulation promoted rodent OSN survival, it induced generation of reactive oxygen species in a dose‐ and time‐dependent manner as well as loss of membrane potential and fragmentation of mitochondria. The MEK‐Erk pathway played a critical role in mediating these events, as its inhibition decreased odorant stimulation‐dependent OSN survival and exacerbated intracellular stress measured by reactive oxygen species generation and heat‐shock protein 70 expression. The phosphoinositide pathway, rather than the cyclic AMP pathway, mediated the odorant‐induced activation of the MEK‐Erk pathway. These findings provide important insights into the mechanisms of activity‐driven OSN survival, the role of the phosphoinositide pathway in odorant signaling, and demonstrate that odorant detection and odorant stimulation‐mediated survival proceed via independent signaling pathways. This mechanism, which permits independent regulation of odorant detection from survival signaling, may be advantageous if not diminished by repeated or prolonged odor exposure.

  相似文献   


7.
8.
Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA induced a rapid and dramatic decrease in reduced glutathione that was immediately followed by a spontaneous recovery. This transient decrease in glutathione oxidation was preceded by an increase in the rate of glucose oxidation through the pentose phosphate pathway (PPP), and a concomitant decrease in glucose oxidation through glycolysis. DHA stimulated the activity of glucose‐6‐phosphate dehydrogenase, the rate‐limiting enzyme of the PPP. Furthermore, we found that DHA stimulated the rate of lactate uptake by neurons in a time‐ and dose‐dependent manner. Thus, DHA is a novel modulator of neuronal energy metabolism by facilitating the utilization of glucose through the PPP for antioxidant purposes.

  相似文献   


9.
The gene encoding leucine‐rich repeat kinase 2 (LRRK2) comprises a major risk factor for Parkinson's disease. Recently, it has emerged that LRRK2 plays important roles in the immune system. LRRK2 is induced by interferon‐γ (IFN‐γ) in monocytes, but the signaling pathway is not known. Here, we show that IFN‐γ‐mediated induction of LRRK2 was suppressed by pharmacological inhibition and RNA interference of the extracellular signal‐regulated kinase 5 (ERK5). This was confirmed by LRRK2 immunostaining, which also revealed that the morphological responses to IFN‐γ were suppressed by ERK5 inhibitor treatment. Both human acute monocytic leukemia THP‐1 cells and human peripheral blood monocytes stimulated the ERK5‐LRRK2 pathway after differentiation into macrophages. Thus, LRRK2 is induced via a novel, ERK5‐dependent IFN‐γ signal transduction pathway, pointing to new functions of ERK5 and LRRK2 in human macrophages.

  相似文献   


10.
A major cause of alcohol toxicity is the production of reactive oxygen species generated during ethanol metabolism. The aim of this study was to compare the effect of binge drinking‐like alcohol exposure on a panel of genes implicated in oxidative mechanisms in adolescent and adult mice. In adolescent animals, alcohol decreased the expression of genes involved in the repair and protection of oxidative DNA damage such as atr, gpx7, or nudt15 and increased the expression of proapoptotic genes such as casp3. In contrast, in the adult brain, genes activated by alcohol were mainly associated with protective mechanisms that prevent cells from oxidative damage. Whatever the age, iterative binge‐like episodes provoked the same deleterious effects as those observed after a single binge episode. In adolescent mice, multiple binge ethanol exposure substantially reduced neurogenesis in the dentate gyrus and impaired short‐term memory in the novel object and passive avoidance tests. Taken together, our results indicate that alcohol causes deleterious effects in the adolescent brain which are distinct from those observed in adults. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity.

  相似文献   


11.
Chronic neuroinflammation may be a critical component of intractable inflammatory diseases, including neuropathic pain. Because angiogenesis as a result of vascular endothelial growth factor (VEGF) signaling plays a pivotal role in inflammation, we focused on the mechanisms of VEGF‐regulated neuropathic pain in mice. The mRNA and protein expression of VEGFA were up‐regulated in the injured sciatic nerve after partial sciatic nerve ligation (PSL). VEGFA was localized to accumulated macrophages and neutrophils derived from bone marrow. Up‐regulation of VEGFA was mediated by histone H3 acetylation and trimethylation in its promoter region. VEGF receptors (VEGFR1 and VEGFR2) were localized to vascular endothelial cells or macrophages. By ex vivo fluorescence imaging and immunohistochemistry using DiI fluorescence, progression of angiogenesis was observed in the injured sciatic nerve after PSL. Perineural administration of pharmacological inhibitors of VEGFA and VEGFR tyrosine kinases prevented tactile allodynia and thermal hyperalgesia caused by PSL. Moreover, we determined the contribution of VEGF‐ and CXC‐chemokine receptor 4‐expressing angiogenic macrophages to neuropathic pain. Taken together, VEGFA is up‐regulated in injured peripheral nerves and participates in angiogenesis and prolonged pain behaviors through its receptors. We propose that VEGFA‐related components may underlie peripheral sensitization leading to neuropathic pain.

  相似文献   


12.
13.
Japanese encephalitis virus (JEV), a single‐stranded RNA (ssRNA) virus, is the leading cause of encephalitis in Asia. Microglial activation is one of the key events in JEV‐induced neuroinflammation. Although the various microRNAs (miRNAs) has been shown to regulate microglia activation during pathological conditions including neuroviral infections, till date, the involvement of miRNAs in JEV infection has not been evaluated. Hence, we sought to evaluate the possible role of miRNAs in mediating JEV‐induced microglia activation. Initial screening revealed significant up‐regulation of miR‐29b in JEV‐infected mouse microglial cell line (BV‐2) and primary microglial cells. Furthermore, using bioinformatics tools, we identified tumor necrosis factor alpha‐induced protein 3, a negative regulator of nuclear factor‐kappa B signaling as a potential target of miR‐29b. Interestingly, in vitro knockdown of miR‐29b resulted in significant over‐expression of tumor necrosis factor alpha‐induced protein 3, and subsequent decrease in nuclear translocation of pNF‐κB. JEV infection in BV‐2 cell line elevated inducible nitric oxide synthase, cyclooxygenase‐2, and pro‐inflammatory cytokine expression levels, which diminished after miR‐29b knockdown. Collectively, our study demonstrates involvement of miR‐29b in regulating JEV‐ induced microglial activation.

  相似文献   


14.
Calmodulin regulated spectrin‐associated protein 1 (CAMSAP1) is a vertebrate microtubule‐binding protein, and a representative of a family of cytoskeletal proteins that arose with animals. We reported previously that the central region of the protein, which contains no recognized functional domain, inhibited neurite outgrowth when over‐expressed in PC12 cells [Baines et al., Mol. Biol. Evol. 26 (2009), p. 2005]. The CKK domain (DUF1781) binds microtubules and defines the CAMSAP/ssp4 family of animal proteins (Baines et al. 2009). In the central region, three short well‐conserved regions are characteristic of CAMSAP‐family members. One of these, CAMSAP‐conserved region 1 (CC1), bound to both βIIΣ1‐spectrin and Ca2+/calmodulin in vitro. The binding of Ca2+/calmodulin inhibited spectrin binding. Transient expression of CC1 in PC12 cells inhibited neurite outgrowth. siRNA knockdown of CAMSAP1 inhibited neurite outgrowth in PC12 cells or primary cerebellar granule cells: this could be rescued in PC12 cells by wild‐type CAMSAP1‐enhanced green fluorescent protein, but not by a CC1 mutant. We conclude that CC1 represents a functional region of CAMSAP1, which links spectrin‐binding to neurite outgrowth.

  相似文献   


15.
16.
17.
18.
Bone cancer pain (BCP) is one of the most common and severe complications in patients suffering from primary bone cancer or metastatic bone cancer such as breast, prostate, or lung, which profoundly compromises their quality of life. Emerging lines of evidence indicate that central sensitization is required for the development and maintenance of BCP. However, the underlying mechanisms are largely unknown. In this study, we investigated the role of PI3Kγ/Akt in the central sensitization in rats with tumor cell implantation in the tibia, a widely used model of BCP. Our results showed that PI3Kγ and its downstream target pAkt were up‐regulated in a time‐dependent manner and distributed predominately in the superficial layers of the spinal dorsal horn neurons, astrocytes and a minority of microglia, and were colocalized with non‐peptidergic, calcitonin gene‐related peptide‐peptidergic, and A‐type neurons in dorsal root ganglion ipsilateral to tumor cell inoculation in rats. Inhibition of spinal PI3Kγ suppressed BCP‐associated behaviors and the up‐regulation of pAkt in the spinal cord and dorsal root ganglion. This study suggests that PI3Kγ/Akt signal pathway mediates BCP in rats.

  相似文献   


19.
Ischaemic strokes evoke blood–brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho‐kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho‐kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil‐ versus vehicle‐treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post‐ischaemia or 4 h post‐ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress‐ and tight junction‐related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen–glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin‐5. Cotreatment of cells with Y‐27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho‐kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号