首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV‐1 infects the brain and, despite antiretroviral therapy, many infected individuals suffer from HIV‐1‐associated neurocognitive disorders (HAND). HAND is associated with dendritic simplification and synaptic loss. Prevention of synaptodendritic damage may ameliorate or forestall neurocognitive decline in latent HIV‐1 infections. The HIV‐1 transactivating protein (Tat) is produced during viral latency in the brain and may cause synaptodendritic damage. This study examined the integrity of the dendritic network after exposure to HIV‐1 Tat by labeling filamentous actin (F‐actin)‐rich structures (puncta) in primary neuronal cultures. After 24 h of treatment, HIV‐1 Tat was associated with the dendritic arbor and produced a significant reduction of F‐actin‐labeled dendritic puncta as well as loss of dendrites. Pre‐treatment with either of two plant‐derived phytoestrogen compounds (daidzein and liquiritigenin), significantly reduced synaptodendritic damage following HIV‐1 Tat treatment. In addition, 6 days after HIV‐1 Tat treatment, treatment with either daidzein, or liquiritigenin enhanced recovery, via the estrogen receptor, from HIV‐1 Tat‐induced synaptodendritic damage. These results suggest that either liquiritigenin or daidzein may not only attenuate acute synaptodendritic injury in HIV‐1 but may also promote recovery from synaptodendritic damage.

  相似文献   


2.
Our previous work has suggested that traumatic noise activates Rho‐GTPase pathways in cochlear outer hair cells (OHCs), resulting in cell death and noise‐induced hearing loss (NIHL). In this study, we investigated Rho effectors, Rho‐associated kinases (ROCKs), and the targets of ROCKs, the ezrin‐radixin‐moesin (ERM) proteins, in the regulation of the cochlear actin cytoskeleton using adult CBA/J mice under conditions of noise‐induced temporary threshold shift (TTS) and permanent threshold shift (PTS) hearing loss, which result in changes to the F/G‐actin ratio. The levels of cochlear ROCK2 and p‐ERM decreased 1 h after either TTS‐ or PTS‐noise exposure. In contrast, ROCK2 and p‐ERM in OHCs decreased only after PTS‐, not after TTS‐noise exposure. Treatment with lysophosphatidic acid, an activator of the Rho pathway, resulted in significant reversal of the F/G‐actin ratio changes caused by noise exposure and attenuated OHC death and NIHL. Conversely, the down‐regulation of ROCK2 by pretreatment with ROCK2 siRNA reduced the expression of ROCK2 and p‐ERM in OHCs, exacerbated TTS to PTS, and worsened OHC loss. Additionally, pretreatment with siRNA against radixin, an ERM protein, aggravated TTS to PTS. Our results indicate that a ROCK2‐mediated ERM‐phosphorylation signaling cascade modulates noise‐induced hair cell loss and NIHL by targeting the cytoskeleton.

  相似文献   


3.
Human immunodeficiency virus‐1 (HIV) is a public health issue and a major complication of the disease is NeuroAIDS. In vivo, microglia/macrophages are the main cells infected. However, a low but significant number of HIV‐infected astrocytes has also been detected, but their role in the pathogenesis of NeuroAIDS is not well understood. Our previous data indicate that gap junction channels amplify toxicity from few HIV‐infected into uninfected astrocytes. Now, we demonstrated that HIV infection of astrocytes results in the opening of connexin43 hemichannels (HCs). HIV‐induced opening of connexin43 HCs resulted in dysregulated secretion of dickkopf‐1 protein (DKK1, a soluble wnt pathway inhibitor). Treatment of mixed cultures of neurons and astrocytes with DKK1, in the absence of HIV infection, resulted in the collapse of neuronal processes. HIV infection of mixed cultures of human neurons and astrocytes also resulted in the collapse of neuronal processes through a DKK1‐dependent mechanism. In addition, dysregulated DKK1 expression in astrocytes was observed in human brain tissue sections of individuals with HIV encephalitis as compared to tissue sections from uninfected individuals. Thus, we demonstrated that HIV infection of astrocytes induces dysregulation of DKK1 by a HC‐dependent mechanism that contributes to the brain pathogenesis observed in HIV‐infected individuals.

  相似文献   


4.
Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both β‐actin and GAP‐43 mRNAs. β‐actin 3′UTR has a defined element for interaction with ZBP1, but GAP‐43 mRNA shows no homology to this RNA sequence. Here, we show that an AU‐rich regulatory element (ARE) in GAP‐43′s 3′UTR is necessary and sufficient for its axonal localization. Axonal GAP‐43 mRNA levels increase after in vivo injury, and GAP‐43 mRNA shows an increased half‐life in regenerating axons. GAP‐43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 co‐immunoprecipitate in an RNA‐dependent fashion. Reporter mRNA with the GAP‐43 ARE competes with endogenous β‐actin mRNA for axonal localization and decreases axon length and branching similar to the β‐actin 3′UTR competing with endogenous GAP‐43 mRNA. Conversely, over‐expressing GAP‐43 coding sequence with its 3′UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP‐43′s 3′UTR.

  相似文献   


5.
6.
The exact effect of glycine pre‐treatment on brain ischemic tolerance (IT) remains quite controversial. The objective of this study was to investigate the potential effects of glycine on IT. We used rat models of both in vitro ischemia (oxygen and glucose deprivation) and in vivo ischemia (transient middle cerebral artery occlusion). Low doses of glycine (L‐Gly) significantly decreased hippocampal ischemic LTP (i‐LTP), infarct volume, and neurological deficit scores which were administered before ischemia was induced in rats, whereas high doses of glycine exerted deteriorative effects under the same condition. These findings suggested that exogenous glycine may induce IT in a dose‐dependent manner. Furthermore, L‐Gly‐dependent neuronal protection was inversed by L689, a selective NMDAR glycine site antagonist both in vitro (abolished i‐LTP depression) and in vivo (increased infarct size reduction), but not glycine receptor (GlyR) inhibitor strychnine. Importantly, L‐Gly‐induced IT was achieved by NR2A‐dependent cAMP‐response element binding protein phosphorylation. These data imply that glycine pre‐treatment may represent a novel strategy for inducing IT based on synaptic NMDAR‐dependent neuronal transmission.

  相似文献   


7.
HIV‐1 invades CNS in the early course of infection, which can lead to the cascade of neuroinflammation. NADPH oxidases (NOXs) are the major producers of reactive oxygen species (ROS), which play important roles during pathogenic insults. The molecular mechanism of ROS generation via microRNA‐mediated pathway in human microglial cells in response to HIV‐1 Tat protein has been demonstrated in this study. Over‐expression and knockdown of microRNAs, luciferase reporter assay, and site‐directed mutagenesis are main molecular techniques used in this study. A significant reduction in miR‐17 levels and increased NOX2, NOX4 expression levels along with ROS production were observed in human microglial cells upon HIV‐1 Tat C exposure. The validation of NOX2 and NOX4 as direct targets of miR‐17 was done by luciferase reporter assay. The over‐expression and knockdown of miR‐17 in human microglial cells showed the direct role of miR‐17 in regulation of NOX2, NOX4 expression and intracellular ROS generation. We demonstrated the regulatory role of cellular miR‐17 in ROS generation through over‐expression and knockdown of miR‐17 in human microglial cells exposed to HIV‐1 Tat C protein.

  相似文献   


8.
During human immunodeficiency virus (HIV)‐1 infection, perturbations in neuron–glia interactions may culminate in neuronal damage. Recently, purinergic receptors have been implicated in the promotion of virus‐induced neurotoxicity and supporting the viral life cycle at multiple stages. The astrocytes robustly express purinergic receptors. We therefore sought to examine if P2X7R, a P2X receptor subtype, can mediate HIV‐1 Tat‐induced neuronal apoptosis. Tat augmented the expression of P2X7R in astrocytes. Our data reveal the involvement of P2X7R in Tat‐mediated release of monocyte chemoattractant protein (MCP‐1) /chemokine (C‐C motif) ligand 2 (CCL2) from the astrocytes. P2X7R antagonists, such as the oxidized ATP, A438079, brilliant blue G, and broad spectrum P2 receptor antagonist suramin, attenuated Tat‐induced CCL2 release in a calcium‐ and extracellular signal‐regulated kinase (ERK)1/2‐dependent manner. Calcium chelators, (1,2‐bis(o‐aminophenoxy) ethane‐N,N,N',N'‐tetraacetic acid) acetoxymethyl ester and EGTA, and ERK1/2 inhibitor U0126 abolished chemokine (C‐C motif) ligand 2 release from astrocytes. Furthermore, in human neuronal cultures, we demonstrated P2X7R involvement in Tat‐mediated neuronal death. Importantly, in the TUNEL assay, the application of P2X7R‐specific antagonists or the knockdown of P2X7R in human astrocytes reduced HIV‐Tat‐induced neuronal death significantly, underlining the critical role of P2X7R in Tat‐mediated neurotoxicity. Our study provides novel insights into astrocyte‐mediated neuropathogenesis in HIV‐1 infection and a novel target for therapeutic management of neuroAIDS.

  相似文献   


9.
Middle cerebral artery occlusion (MCAO) induces secondary damages in the hippocampus that is remote from primary ischemic regions. Tau hyperphosphorylation is an important risk for neurodegenerative diseases. Increased tau phosphorylation has been identified in ischemic cortex, but little is known regarding the changes in the hippocampus. We showed that unilateral transient MCAO induced accumulation of hyperphosphorylated tau and concurrent dephosphorylation of glycogen synthase kinase‐3β at Ser 9 in the ipsilateral hippocampus. These MCAO‐induced changes were not reproduced when glutamatergic inputs from the entorhinal cortex to the hippocampus were transected; however, the changes were mimicked by intrahippocampal N‐methyl‐d ‐aspartate (NMDA) administration. Inhibition of NMDA receptor (NMDAR) subunit NR2B, but not NR2A activity in the hippocampus attenuated the accumulation of hyperphosphorylated tau and spatial cognitive impairment in MCAO rats. Together, our data suggest that overactivation of NR2B‐containing NMDARs through entorhinal–hippocampal connection plays an important role in the accumulation of hyperphosphorylated tau in the hippocampus following MCAO. Glycogen synthase kinase‐3β is an important protein kinase involved in NMDARs‐mediated tau hyperphosphorylation. This study indicates that early inhibition of NR2B‐containing NMDARs may represent a potential strategy to prevent or delay the occurrence of post‐stroke dementia.

  相似文献   


10.
Excitotoxicity and disruption of Ca2+ homeostasis have been implicated in amyotrophic lateral sclerosis (ALS) and limiting Ca2+ entry is protective in models of ALS caused by mutation of SOD1. Lomerizine, an antagonist of L‐ and T‐type voltage‐gated calcium channels and transient receptor potential channel 5 transient receptor potential channels, is well tolerated clinically, making it a potential therapeutic candidate. Lomerizine reduced glutamate excitotoxicity in cultured motor neurons by reducing the accumulation of cytoplasmic Ca2+ and protected motor neurons against multiple measures of mutant SOD1 toxicity: Ca2+ overload, impaired mitochondrial trafficking, mitochondrial fragmentation, formation of mutant SOD1 inclusions, and loss of viability. To assess the utility of lomerizine in other forms of ALS, calcium homeostasis was evaluated in culture models of disease because of mutations in the RNA‐binding proteins transactive response DNA‐binding protein 43 (TDP‐43) and Fused in Sarcoma (FUS). Calcium did not play the same role in the toxicity of these mutant proteins as with mutant SOD1 and lomerizine failed to prevent cytoplasmic accumulation of mutant TDP‐43, a hallmark of its pathology. These experiments point to differences in the pathogenic pathways between types of ALS and show the utility of primary culture models in comparing those mechanisms and effectiveness of therapeutic strategies.

  相似文献   


11.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


12.
Two glutamate receptors, metabotropic glutamate receptor 5 (mGluR5), and ionotropic NMDA receptors (NMDAR), functionally interact with each other to regulate excitatory synaptic transmission in the mammalian brain. In exploring molecular mechanisms underlying their interactions, we found that Ca2+/calmodulin‐dependent protein kinase IIα (CaMKIIα) may play a central role. The synapse‐enriched CaMKIIα directly binds to the proximal region of intracellular C terminal tails of mGluR5 in vitro. This binding is state‐dependent: inactive CaMKIIα binds to mGluR5 at a high level whereas the active form of the kinase (following Ca2+/calmodulin binding and activation) loses its affinity for the receptor. Ca2+ also promotes calmodulin to bind to mGluR5 at a region overlapping with the CaMKIIα‐binding site, resulting in a competitive inhibition of CaMKIIα binding to mGluR5. In rat striatal neurons, inactive CaMKIIα constitutively binds to mGluR5. Activation of mGluR5 Ca2+‐dependently dissociates CaMKIIα from the receptor and simultaneously promotes CaMKIIα to bind to the adjacent NMDAR GluN2B subunit, which enables CaMKIIα to phosphorylate GluN2B at a CaMKIIα‐sensitive site. Together, the long intracellular C‐terminal tail of mGluR5 seems to serve as a scaffolding domain to recruit and store CaMKIIα within synapses. The mGluR5‐dependent Ca2+ transients differentially regulate CaMKIIα interactions with mGluR5 and GluN2B in striatal neurons, which may contribute to cross‐talk between the two receptors.

  相似文献   


13.
The gene encoding leucine‐rich repeat kinase 2 (LRRK2) comprises a major risk factor for Parkinson's disease. Recently, it has emerged that LRRK2 plays important roles in the immune system. LRRK2 is induced by interferon‐γ (IFN‐γ) in monocytes, but the signaling pathway is not known. Here, we show that IFN‐γ‐mediated induction of LRRK2 was suppressed by pharmacological inhibition and RNA interference of the extracellular signal‐regulated kinase 5 (ERK5). This was confirmed by LRRK2 immunostaining, which also revealed that the morphological responses to IFN‐γ were suppressed by ERK5 inhibitor treatment. Both human acute monocytic leukemia THP‐1 cells and human peripheral blood monocytes stimulated the ERK5‐LRRK2 pathway after differentiation into macrophages. Thus, LRRK2 is induced via a novel, ERK5‐dependent IFN‐γ signal transduction pathway, pointing to new functions of ERK5 and LRRK2 in human macrophages.

  相似文献   


14.
Striatal neurodegeneration and synaptic dysfunction in Huntington's disease are mediated by the mutant huntingtin (mHtt) protein. MHtt disrupts calcium homeostasis and facilitates excitotoxicity, in part by altering NMDA receptor (NMDAR) trafficking and function. Pre‐symptomatic (excitotoxin‐sensitive) transgenic mice expressing full‐length human mHtt with 128 polyglutamine repeats (YAC128 Huntington's disease mice) show increased calpain activity and extrasynaptic NMDAR (Ex‐NMDAR) localization and signaling. Furthermore, Ex‐NMDAR stimulation facilitates excitotoxicity in wild‐type cortical neurons via calpain‐mediated cleavage of STriatal‐Enriched protein tyrosine Phosphatase 61 (STEP61). The cleavage product, STEP33, cannot dephosphorylate p38 mitogen‐activated protein kinase (MAPK), thereby augmenting apoptotic signaling. Here, we show elevated extrasynaptic calpain‐mediated cleavage of STEP61 and p38 phosphorylation, as well as STEP61 inactivation and reduced extracellular signal‐regulated protein kinase 1/2 phosphorylation (ERK1/2) in the striatum of 6‐week‐old, excitotoxin‐sensitive YAC128 mice. Calpain inhibition reduced basal and NMDA‐induced STEP61 cleavage. However, basal p38 phosphorylation was normalized by a peptide disrupting NMDAR‐post‐synaptic density protein‐95 (PSD‐95) binding but not by calpain inhibition. In 1‐year‐old excitotoxin‐resistant YAC128 mice, STEP33 levels were not elevated, but STEP61 inactivation and p38 and ERK 1/2 phosphorylation levels were increased. These results show that in YAC128 striatal tissue, enhanced NMDAR–PSD‐95 interactions contributes to elevated p38 signaling in early, excitotoxin‐sensitive stages, and suggest that STEP61 inactivation enhances MAPK signaling at late, excitotoxin‐resistant stages.

  相似文献   


15.
Japanese encephalitis virus (JEV), a single‐stranded RNA (ssRNA) virus, is the leading cause of encephalitis in Asia. Microglial activation is one of the key events in JEV‐induced neuroinflammation. Although the various microRNAs (miRNAs) has been shown to regulate microglia activation during pathological conditions including neuroviral infections, till date, the involvement of miRNAs in JEV infection has not been evaluated. Hence, we sought to evaluate the possible role of miRNAs in mediating JEV‐induced microglia activation. Initial screening revealed significant up‐regulation of miR‐29b in JEV‐infected mouse microglial cell line (BV‐2) and primary microglial cells. Furthermore, using bioinformatics tools, we identified tumor necrosis factor alpha‐induced protein 3, a negative regulator of nuclear factor‐kappa B signaling as a potential target of miR‐29b. Interestingly, in vitro knockdown of miR‐29b resulted in significant over‐expression of tumor necrosis factor alpha‐induced protein 3, and subsequent decrease in nuclear translocation of pNF‐κB. JEV infection in BV‐2 cell line elevated inducible nitric oxide synthase, cyclooxygenase‐2, and pro‐inflammatory cytokine expression levels, which diminished after miR‐29b knockdown. Collectively, our study demonstrates involvement of miR‐29b in regulating JEV‐ induced microglial activation.

  相似文献   


16.
Calmodulin regulated spectrin‐associated protein 1 (CAMSAP1) is a vertebrate microtubule‐binding protein, and a representative of a family of cytoskeletal proteins that arose with animals. We reported previously that the central region of the protein, which contains no recognized functional domain, inhibited neurite outgrowth when over‐expressed in PC12 cells [Baines et al., Mol. Biol. Evol. 26 (2009), p. 2005]. The CKK domain (DUF1781) binds microtubules and defines the CAMSAP/ssp4 family of animal proteins (Baines et al. 2009). In the central region, three short well‐conserved regions are characteristic of CAMSAP‐family members. One of these, CAMSAP‐conserved region 1 (CC1), bound to both βIIΣ1‐spectrin and Ca2+/calmodulin in vitro. The binding of Ca2+/calmodulin inhibited spectrin binding. Transient expression of CC1 in PC12 cells inhibited neurite outgrowth. siRNA knockdown of CAMSAP1 inhibited neurite outgrowth in PC12 cells or primary cerebellar granule cells: this could be rescued in PC12 cells by wild‐type CAMSAP1‐enhanced green fluorescent protein, but not by a CC1 mutant. We conclude that CC1 represents a functional region of CAMSAP1, which links spectrin‐binding to neurite outgrowth.

  相似文献   


17.
18.
Recent evidence suggests that the predominant astrocyte glutamate transporter, GLT‐1/ Excitatory Amino Acid Transporter 2 (EAAT2) is associated with mitochondria. We used primary cultures of mouse astrocytes to assess co‐localization of GLT‐1 with mitochondria, and tested whether the interaction was dependent on neurons, actin polymerization or the kinesin adaptor, TRAK2. Mouse primary astrocytes were transfected with constructs expressing V5‐tagged GLT‐1, pDsRed1‐Mito with and without dominant negative TRAK2. Astrocytes were visualized using confocal microscopy and co‐localization was quantified using Volocity software. Image analysis of confocal z‐stacks revealed no co‐localization between mitochondria and GLT‐1 in pure astrocyte cultures. Co‐culture of astrocytes with primary mouse cortical neurons revealed more mitochondria in processes and a positive correlation between mitochondria and GLT‐1. This co‐localization was not further enhanced after neuronal depolarization induced by 1 h treatment with 15 mM K+. In pure astrocytes, a rho kinase inhibitor, Y27632 caused the distribution of mitochondria to astrocyte processes without enhancing GLT‐1/mitochondrial co‐localization, however, in co‐cultures, Y27632 abolished mitochondrial:GLT‐1 co‐localization. Disrupting potential mitochondrial: kinesin interactions using dominant negative TRAK2 did not alter GLT‐1 distribution or GLT‐1: mitochondrial co‐localization. We conclude that the association between GLT‐1 and mitochondria is modest, is driven by synaptic activity and dependent on polymerized actin filaments.

  相似文献   


19.
Reduced expression of a ~150 kDa protein was unexpectedly observed while investigating Norrin protein in a transgenic murine model in which Müller cells can be selectively and inducibly disrupted. Isolation of this unknown protein via ion exchange and hydrophobic interaction chromatography followed by Tandem mass spectrometry identified it as Inter‐photoreceptor retinoid‐binding protein (IRBP). Significantly reduced IRBP mRNA expression was observed at the early and late stages after Müller cell disruption. IRBP protein expression was also consistently reduced to 5.7% of the control level as early as 1 week after Müller cell disruption. This down‐regulation of IRBP was accompanied by focal hyperfluorescent dots and cytotoxic N‐retinylidene‐N‐retinylethanolamine (A2E) accumulation. In vitro treatment of cone photoreceptor cell lines with conditioned medium collected from stressed Müller cells suggested that Müller cells regulated photoreceptors expression of IRBP via secreted factor(s). In vivo studies suggested that one of these secreted factors was tumour necrosis factor alpha (TNFα). These findings suggest that dysregulation of IRBP expression caused by Müller cell dysfunction may be an important early event in photoreceptor degeneration in some retinal diseases.

  相似文献   


20.
Ceftriaxone(Cef) selectively increases the expression of glial glutamate transporter‐1 (GLT‐1), which was thought to be neuroprotective in some circumstances. However, the effect of Cef on glutamate uptake of GLT‐1 was mostly assayed using in vitro studies such as primary neuron/astrocyte cultures or brain slices. In addition, the effect of Cef on neurons in different ischemic models was still discrepant. Therefore, this study was undertaken to observe the effect of Cef on neurons in global brain ischemia in rats, and especially to provide direct evidence of the up‐regulation of GLT‐1 uptake for glutamate contributing to the neuronal protection of Cef against brain ischemia. Neuropathological evaluation indicated that administration of Cef, especially pre‐treatment protocols, significantly prevented delayed neuronal death in hippocampal CA1 subregion normally induced by global brain ischemia. Simultaneously, pre‐administration of Cef significantly up‐regulated the expression of GLT‐1. Particularly, GLT‐1 uptake assay with 3H‐glutamate in living cells from adult rats showed that up‐regulation in glutamate uptake accompanied up‐regulated GLT‐1 expression. Inhibition of GLT‐1 by antisense oligodeoxynucleotides or dihydrokainate significantly inhibited the Cef‐induced up‐regulation in GLT‐1 uptake and the neuroprotective effect against global ischemia. Thus, we may conclude that Cef protects neurons against global brain ischemia via up‐regulation of the expression and glutamate uptake of GLT‐1.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号