首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Competing methyltransferase systems   总被引:11,自引:0,他引:11  
  相似文献   

3.
Microassay for DNA methyltransferase   总被引:6,自引:0,他引:6  
A microassay for DNA methylase is described which can detect activity in as few as 50 tissue culture cells. The cells are lysed and incubated for 2 h at 37 degrees C with 3 microCi high specific activity [3H]AdoMet and 0.5 microgram poly[d(I-C).d(I-C)] in a volume of 23 microliters. Ribonuclease is present during the assay and the product DNA is isolated by phenol extraction after protease digestion.  相似文献   

4.
Phosphatidylethanolamine methyltransferase (PEMT) and phospholipid methyltransferase (PLMT), which are encoded by the CHO2 and OPI3 genes, respectively, catalyze the three-step methylation of phosphatidylethanolamine to phosphatidylcholine in Saccharomyces cerevisiae. Regulation of PEMT and PLMT as well as CHO2 mRNA and OPI3 mRNA abundance was examined in S. cerevisiae cells supplemented with phospholipid precursors. The addition of choline to inositol-containing growth medium repressed the levels of CHO2 mRNA and OPI3 mRNA abundance in wild-type cells. The major effect on the levels of the CHO2 mRNA and OPI3 mRNA occurred in response to inositol. Regulation was also examined in cho2 and opi3 mutants, which are defective in PEMT and PLMT activities, respectively. These mutants can synthesize phosphatidylcholine when they are supplemented with choline by the CDP-choline-based pathway but they are not auxotrophic for choline. CHO2 mRNA and OPI3 mRNA were regulated by inositol plus choline in opi3 and cho2 mutants, respectively. However, there was no regulation in response to inositol when the mutants were not supplemented with choline. This analysis showed that the regulation of CHO2 mRNA and OPI3 mRNA abundance by inositol required phosphatidylcholine synthesis by the CDP-choline-based pathway. The regulation of CHO2 mRNA and OPI3 mRNA abundance generally correlated with the activities of PEMT and PLMT, respectively. CDP-diacylglycerol synthase and phosphatidylserine synthase, which are regulated by inositol in wild-type cells, were examined in the cho2 and opi3 mutants. Phosphatidylcholine synthesis was not required for the regulation of CDP-diacylglycerol synthase and phosphatidylserine synthase by inositol.  相似文献   

5.
Guanidinoacetate methyltransferase (GAMT) is the enzyme that catalyzes the last step of creatine biosynthesis. The enzyme is found in abundance in the livers of all vertebrates. The intact GAMT from recombinant rat liver has been crystallized with an inhibitor S-adenosylhomocysteine (SAH) and a substrate guanidinoacetate (GAA), and with SAH and an inhibitor guanidine (GUN). These ternary complex structures have been determined at 2.0 A resolution. GAMT has an alpha/beta open-sandwich structure, and the N-terminal section (residues 1-42) covers the active site entrance so that the active site is not visible. SAH has extensive interactions with GAMT through H-bonds and hydrophobic interactions. The guanidino groups of GAA and GUN form two pairs of H-bonds with E45 and D134, respectively. The carboxylate group of GAA interacts with the backbone amide groups of L170 and T171. A model structure of GAMT containing the two substrates (SAM and GAA) was built by attaching a methyl group (C(E)) on S(D) of the bound SAH. On the basis of this model structure, a catalytic mechanism of GAMT is proposed. The active site entrance is opened when the N-terminal section is moved out. GAA and SAM enter the active site and interact with the amino acid residues on the surface of the active site by polar and nonpolar interactions. O(D1) of D134 and C(E) of SAM approach N(E) of GAA from the tetrahedral directions. The O(D1)...N(E) and C(E)...N(E) distances are 2.9 and 2.2 A, respectively. It is proposed that three slightly negatively charged carbonyl oxygen atoms (O of T135, O of C168, and O(B) of GAA) around O(D1) of D134 increase the pK(a) of O(D1) so that O(D1) abstracts the proton on N(E). A strong nucleophile is generated on the deprotonated N(E) of GAA, which abstracts the methyl group (C(E)) from the positively charged S(D) of SAM, and creatine (methyl-GAA) and SAH (demethyl-SAM) are produced. E45, D134, and Y221 mutagenesis studies support the proposed mechanism. A mutagenesis study and the inhibitory mechanism of guanidine analogues support the proposed mechanism.  相似文献   

6.
DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.  相似文献   

7.
In the yeast Saccharomyces cerevisiae, two membrane-associated enzymes catalyze the three-step methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC). Phosphatidylethanolamine methyltransferase (PEMT) catalyzes the first methylation reactions (PE----phosphatidylmonomethylethanolamine (PMME] and phospholipid methyltransferase (PLMT) catalyzes the second two methylation reactions (PMME----phosphatidyldimethylethanolamine (PDME)----PC). Using gene disruption mutants of the S. cerevisiae OP13 and CHO2 genes, we independently studied the enzymological properties of microsome-associated PEMT and PLMT, respectively. The enzymological properties of the enzymes differed with respect to their pH optima, cofactor requirements and thermal lability. For the PEMT reactions, the apparent Km values for PE and S-Adenosylmethionine (AdoMet) were 57 microM and 110 microM, respectively. For the PLMT reactions, the apparent Km values for PMME and PDME were 380 microM and 180 microM, respectively. The apparent Km values for AdoMet were 54 microM and 59 microM with PMME and PDME as substrates, respectively. S-Adenosylhomocysteine (AdoHcy) was a competitive inhibitor of PEMT (Ki = 12 microM) and PLMT (Ki = 57 microM and Ki = 54 microM for PMME and PDME, respectively) with respect to AdoMet. AdoHcy was a noncompetitive inhibitor of PEMT (Ki = 160 microM) and PLMT (Ki = 120 microM) with respect to PE and PMME and PDME, respectively.  相似文献   

8.
An animal virus-induced DNA methyltransferase   总被引:1,自引:0,他引:1  
K Essani  R Goorha  A Granoff 《Gene》1988,74(1):71-72
  相似文献   

9.
10.
11.
The DNA methyltransferase M-BsuE that recognizes the sequence 5'-CGCG-3' has been isolated from Bacillus subtilis strain ISE15. A 1600-fold purification of M-BsuE was achieved by column chromatography on phosphocellulose, heparin-Sepharose, and DEAE-Sepharose. DNA methyltransferase activity was monitored in the column eluants radiochemically by the transfer of tritiated methyl groups from radiolabeled S-adenosylmethionine to poly(dGdC)-poly(dGdC) DNA, a sensitive and specific substrate for M-BsuE activity. The DNA sequence specificity of this methyltransferase activity was confirmed enzymatically by demonstrating that M-BsuE-methylated DNA was selectively protected from cleavage by the restriction enzyme isoschizomers, ThaI and FnuDII. Purified M-BsuE has an apparent molecular size of 41,000-43,000 as determined by gel filtration and migrates as a 41-kDa protein in a sodium dodecyl sulfate-polyacrylamide gel. DNA methylation by M-BsuE is dependent upon the presence of S-adenosylmethionine and 2-mercaptoethanol. M-BsuE methyltransferase activity is optimal at 37 degrees C in the presence of 50 mM Tris-HCl, pH 7.8, 25 mM KCl, 6 microM S-adenosylmethionine, 5 mM 2-mercaptoethanol, and 10 mM EDTA. M-BsuE methylates the external cytidine in its recognition sequence in both linear and supercoiled DNA. A unique property of M-BsuE is its ability to methylate 5'-CGCG-3' in Z-DNA.  相似文献   

12.
13.
A method is described for the assay of histone methyltransferase using soluble histones as substrate. The precipitation of the methylated protein on chromatography paper allows for greater sensitivity and more rapid sample processing than have previously been reported. After incubation of the enzyme in the presence of radioisotopically labeled S-adenosyl-l-methionine and soluble rat brain histone, the residual S-adenosyl-l-methionine is removed by extensive washing in 1.1 m trichloroacetic acid. The amount of methyl groups incorporated into histones is measured by liquid seintillation counting. This procedure can probably be used to assay other protein methylases. A comparison is made between this assay and one using chromosomal bound histones as substrates.  相似文献   

14.
Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G(1) phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis.  相似文献   

15.
16.
The sequential methylation of phosphatidylethanolamine to form phosphatidylcholine is carried out by two methyltransferases in rat brain synaptosomes. The first enzyme methylates phosphatidylethanolamine to form phosphatidylmonomethylethanolamine. The second enzyme methylates the monomethylated phospholipid two additional times, forming phosphatidylcholine. Experiments comparing the rate of methylation between intact and lysed synaptosomes indicate that synaptosomes accumulateS-adenosyl-l-methionine and that the first methylation takes place on the cytoplasmic side of the membrane. Studies comparing trypsin digestion of proteins in intact and lysed synaptosomes indicate that the first enzyme is localized on the cytoplasmic side of the membrane and the second enzyme faces the external surface. Phospholipase C hydrolyzed phosphatidylcholine formed by methylation, suggesting its localization in the external layer of the phospholipid bilayer. A mechanism for an enzyme-mediated flip-flop of phospholipids from the cytoplasmic side to the outer surface of the synaptosomal plasma membrane is presented.  相似文献   

17.
A novel group of Se-methyltransferases is presented. The genetic determinant, named mmtA, which revealed this group was isolated from selenite and selenate-resistant freshwater bacteria. E. coli expressing mmtA and grown with a Se supplement emitted dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe). Phylogenetic analysis divided MmtA-like bacterial sequences into two clusters, one grouping MmtA with S- and O-methyltransferases, and one grouping UbiE C-methyltransferases. Se methylation by some of these MmtA phyletic neighbours was investigated.  相似文献   

18.
Guanidinoacetate methyltransferase (GAMT) is the enzyme that catalyzes the last step of creatine biosynthesis. The enzyme is found in abundance in the livers of all vertebrates. Recombinant rat liver GAMT has been crystallized with S-adenosylhomocysteine (SAH), and the crystal structure has been determined at 2.5 A resolution. The 36 amino acid residues at the N terminus were cleaved during the purification and the truncated enzyme was crystallized. The truncated enzyme forms a dimer, and each subunit contains one SAH molecule in the active site. Arg220 of the partner subunit forms a pair of hydrogen bonds with Asp134 at the guanidinoacetate-binding site. On the basis of the crystal structure, site-directed mutagenesis on Asp134, and chemical modification and limited proteolysis studies, we propose a catalytic mechanism of this enzyme. The truncated GAMT dimer structure can be seen as a ternary complex of protein arginine methyltransferase (one subunit) complexed with a protein substrate (the partner subunit) and the product SAH. Therefore, this structure provides insight into the structure and catalysis of protein arginine methyltransferases.  相似文献   

19.
DNA methylation is involved in epigenetic control of numerous cellular processes in eukaryotes, however, many mechanistic aspects of this phenomenon are not yet understood. A bacterial prototype cytosine-C5 methyltransferase, M.HhaI, serves as a paradigm system for structural and mechanistic studies of biological DNA methylation, but further analysis of the 37 kDa protein is hampered by its insufficient solubility (0.15 mM). To overcome this problem, three hydrophobic patches on the surface of M.HhaI that are not involved in substrate interactions were subjected to site-specific mutagenesis. Residues M51 or V213 were substituted by polar amino acids of a similar size, and/or the C-terminal tetrapeptide FKPY was replaced by a single glycine residue (Delta324G). Two out of six mutants, delta324G and V213S/delta324G, showed improved solubility in initial analyses and were purified to homogeneity using a newly developed procedure. Biochemical studies of the engineered methyltransferases showed that the deletion mutant delta324G retained identical DNA binding, base flipping and catalytic properties as the wild-type enzyme. In contrast, the engineered enzyme showed (i) a significantly increased solubility (>0.35 mM), (ii) high-quality 2D-[(15)N,(1)H] TROSY NMR spectra, and (iii) (15)N spin relaxation times evidencing the presence of a monomeric well-folded protein in solution.  相似文献   

20.
Isoprenylcysteine carboxyl methyltransferase deficiency in mice   总被引:8,自引:0,他引:8  
After isoprenylation, Ras and other CAAX proteins undergo endoproteolytic processing by Rce1 and methylation of the isoprenylcysteine by Icmt (isoprenylcysteine carboxyl methyltransferase). We reported previously that Rce1-deficient mice died during late gestation or soon after birth. We hypothesized that Icmt deficiency might cause a milder phenotype, in part because of reports suggesting the existence of more than one activity for methylating isoprenylated proteins. To address this hypothesis and also to address the issue of other methyltransferase activities, we generated Icmt-deficient mice. Contrary to our expectation, Icmt deficiency caused a more severe phenotype than Rce1 deficiency, with virtually all of the knockout embryos (Icmt-/-) dying by mid-gestation. An analysis of chimeric mice produced from Icmt-/- embryonic stem cells showed that the Icmt-/- cells retained the capacity to contribute to some tissues (e.g. skeletal muscle) but not to others (e.g. brain). Lysates from Icmt-/- embryos lacked the ability to methylate either recombinant K-Ras or small molecule substrates (e.g. N-acetyl-S-geranylgeranyl-l-cysteine). In addition, Icmt-/- cells lacked the ability to methylate Rab proteins. Thus, Icmt appears to be the only enzyme participating in the carboxyl methylation of isoprenylated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号