首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many plants that bear extrafloral nectaries (EFNs) attract various ant species that can exclude herbivores. The aggressiveness of the attracted ants and their temporal activity patterns are important factors that can affect the efficiency of herbivore exclusion from the plant. However, the characteristics of this mutualistic relationship between EFN‐bearing plants and ants have not been sufficiently elucidated. We investigated the aggressiveness of six ant species against the common armyworm, Spodoptera litura Fabr., and temporal fluctuations in the abundance of four aggressive ant species on an EFN‐bearing plant, Mallotus japonicus (L.f.) Müll. Arg. Workers of Crematogaster teranishii Santschi, Pheidole noda Smith, Pristomyrmex punctatus Smith and Formica japonica Motschoulsky were observed to be highly aggressive. In contrast, workers of Camponotus vitiosus Smith showed low aggressiveness. Paratrechina flavipes Smith workers did not attack the herbivore. The activity patterns of the four aggressive ant species greatly differed. Crematogaster teranishii and Ph. noda workers were constantly active throughout the day and night. In contrast, F. japonica was diurnal. Pristomyrmex punctatus was principally nocturnal. Formica japonica workers foraged solitarily, whereas workers of the other three species foraged in a group or recruited nestmates. Our results suggest that the efficacy of the indirect defense in M. japonicus depends principally on the attracted ant species.  相似文献   

2.
Ascertaining the costs and benefits of mutualistic interactions is important for predicting their stability and effect on community dynamics. Despite widespread designation of the interaction between ants and extrafloral nectaries (EFNs) as a mutualism and over 100 years of studies on ant benefits to plants, the benefits to ants have never been experimentally quantified. The success of invasive ants is thought to be linked to the availability of carbohydrate-rich resources, though reports of invasive ant visits to EFNs are mixed. In two laboratory experiments, we compared worker survival of one native (Iridomyrmex chasei) and two invasive ant species (Linepithema humile and Pheidole megacephala) exposed to herbivorized or non-herbivorized EFN-bearing plants (Acacia saligna) or positive and negative controls. We found that non-herbivorized plants did not produce any measurable extrafloral nectar, and ants with access to non-herbivorized plants had the same survival as ants with access to an artificial plant and water (unfed ants). Ants given herbivorized plants had 7–11 times greater worker survival relative to unfed ants, but there were no differences in survival between native and invasive ants exposed to herbivorized plants. Our results reveal that ants cannot induce A. saligna extrafloral nectar production, but workers of both native and invasive ant species can benefit from extrafloral nectar as much as they benefit from sucrose.  相似文献   

3.
Summary. Many species of ground nesting ants regularly visit extrafloral nectaries (EFNs) of the savannah tree Pseudocedrela kotschyi. The distribution of ants on the plants is mosaic-like, i.e. stable and predictable with different ant species dominating neighbouring trees. In order to examine whether foraging behaviour may influence the structure of these ant communities, we investigated individual foraging behaviour of Camponotus sericeus, the ant species with highest incidence on P. kotschyi trees in the study area. Foragers of C. sericeus continuously visited EFNs on the leafs of P. kotschyi during their diurnal activity period. Individually marked foragers showed a pronounced fidelity for individual plants and particular leaves. Ant individuals returned to the same plants over a three week period at least. They persistently focused foraging on the same leaves (about three per ant). Null model analysis of ant distribution revealed that ants partitioned their host plant. Co-occurrence on the same leaves was significantly lower than could be expected by chance for most trees studied. Foraging was not oriented towards the plants growing closest to the nest but more distantly growing plants were considerably used. Choice of plants could therefore be influenced by plant quality or by presence of other, competing ant species. The study is the first to show leaf fidelity caused by EFNs and micro-site fidelity within the context of species rich ant communities. It considers the resulting systematic, partitioned use of individual plants as important factor supporting the formation of a mosaic-like ant distribution on plants.  相似文献   

4.
Herbivores are attracted to young shoots and leaves because of their tender tissues. However, in extrafloral nectaried plants, young leaves also attract patrolling ants, which may chase or prey on herbivores. We examined this scenario in extrafloral nectaried shrubs of Banisteriopsis malifolia resprouting after fire, which promoted both the aseasonal production of leaves and the activity of extrafloral nectaries (EFNs). Results were compared between resprouting (burned) and unburned control plants. The aggressive ant species Camponotus crassus and the herbivorous thrips Pseudophilothrips obscuricornis were respectively rapidly attracted to resprouting plants because of the active EFNs and their less sclerophyllous leaves. The abundance of these insects was almost negligible in the control (unburned) shrubs. Ants failed to protect B. malifolia, as no thrips were preyed upon or injured by ants in resprouting plants. Consequently, on average, 37 % of leaves from resprouting shrubs had necrosis marks. Upon contact with ants, thrips released small liquid droplets from their abdomen, which rapidly displaced ants from the surroundings. This study shows that P. obscuricornis disrupted the facultative mutualism between C. crassus and B. malifolia, since ants received extrafloral nectar from plants, but were unable to deter herbivore thrips.  相似文献   

5.
When aphids parasitize plants with extrafloral nectaries (EFNs) and aphid colony size is small, ants frequently use EFNs but hardly tend aphids. However, as the aphid colony size increases, ants stop using EFNs and strengthen their associations with aphids. Although the shift in ant behavior is important for determining the dynamics of the ant–plant–aphid interaction, it is not known why this shift occurs. Here, we test two hypotheses to explain the mechanism responsible for this behavioral shift: (1) Extrafloral nectar secretion changes in response to aphid herbivory, or (2) plants do not change extrafloral nectar secretion, but the total reward to ants from aphids will exceed that from EFNs above a certain aphid colony size. To judge which mechanism is plausible, we investigated secretion patterns of extrafloral nectar produced by plants with and without aphids, compared the amount of sugar supplied by EFNs and aphids, and examined whether extrafloral nectar or honeydew was more attractive to ants. Our results show that there was no inducible extrafloral secretion in response to aphid herbivory, but the sugar concentration in extrafloral nectar was higher than in honeydew, and more ant workers were attracted to an artificial extrafloral nectar solution than to an artificial aphid honeydew solution. These results indicate that extrafloral nectar is a more attractive reward than aphid honeydew per unit volume. However, even an aphid colony containing only two individuals can supply a greater reward to ants than EFNs. This suggests that the ant behavioral shift may be explained by the second hypothesis.  相似文献   

6.
Extrafloral nectar of plants and honeydew of hemipterans is a food source extensively explored by ants. Although basically a sugary liquid food, nectar and honeydew are composed of different nutrients and offered in distinct ways; thus, ants must interact differently with plants and hemipterans. In this study we assessed the availability and dominance of nectar of extrafloral nectaries and honeydew of sap-sucking hemipterans (i.e., sugar-based resources) as mechanisms regulating interaction frequency and structuring ant-plant-hemipteran networks. We studied 12 plant species (240 shrubs, 20 per species) and 12 hemipteran species (240 aggregations, 20 per species) that interacted with 26 ant species in an area of Rupestrian Fields (Rocky Montane Savannah), Brazil. We observed that the 7 ant species that collected honeydew were a subset of the 25 ant species feeding on nectar, but the highly interacted species Camponotus crassus was the same for both subnetworks. The ant-plant subnetwork exhibited a nested pattern of interaction with a low degree of specialization, while the ant-hemipteran subnetwork exhibited lower nestedness but higher specialization. We found a positive relationship between the offer of EFNs and the number of interactions with ants, probably resulting from reduced competition in plants with high availability of EFNs. However, hemipteran species that were most abundant did not interact with more species of ants, probably because of the numerical dominance of the species tending all hemipteran aggregations, regardless of size. However, segregation between ant species was higher than expected by chance for both plants and hemipterans, confirming a deterministic factor (i.e., competition between ant species) regulating the frequency of interactions. In summary, the availability of ENFs seems to be an important mechanism regulating ant-plant interactions, while numerical dominance seems to be an important mechanism structuring ant-hemipteran interactions.  相似文献   

7.
In the Brazilian savanna many plant species bear regular associations with patrolling ants that are aggressive towards insect herbivores. However, not only ants but also several species of predatory wasps are attracted to plants due to the extrafloral nectaries (EFNs). Such wasps feed on both herbivores and plant exudates. In this study we describe the foraging behavior of the social Polistinae wasp Brachygastra lecheguana in the extrafloral nectaried shrub Banisteriopsis malifolia, and investigated the influence of patrolling ants Camponotus blandus on the activity of the wasp. Brachygastra lecheguana fed on the endophytic larvae of Anthonomus (Curculionidae) beetles that developed inside flower buds. The wasp lacerated the bud layers to reach the beetle larvae located at the bud core. The wasp visits to Ba. malifolia were statistically related to the abundance of flower buds and beetles. Ant exclusion experiments revealed that the hunting behavior of B. lecheguana on beetles was not related to the absence of C. blandus. However we found that wasps spent more time consuming extrafloral nectar on branches where ants were excluded. This is the first study reporting extrafloral nectar consumption by B. lecheguana, as well as the predation on herbivores in natural areas. In cerrado vegetation, ants benefit the plant by reducing insect herbivores, and our study provides evidence that the B. lecheguana – Ba. malifolia system represents a potential interaction where the wasp may also benefit the host plant. The value of this wasp species as a plant‐guard is discussed.  相似文献   

8.
Ant‐lycaenid associations range from mutualism to parasitism and the caterpillars of some species of lycaenids are reported to enter ant nests for shelter, diapause, or pupation. The present study aimed to examine the nature of the association between Euchrysops cnejus (Fabricius) (Lepidoptera: Lycaenidae) and Camponotus compressus (Fabricius) (Hymenoptera: Formicidae) worker ants on the extrafloral nectary‐bearing cowpea plant, Vigna unguiculata (L.) Walp. (Fabaceae). The abundance patterns of the ants and the lycaenid caterpillars together with the spatial patrolling patterns of the ants on the plants revealed that ant abundance increased with the occurrence of the lycaenid caterpillars and the ants preferred the lycaenids over the extrafloral nectar. Camponotus compressus worker ants constructed a shelter at the cowpea plant base after interaction with one or more lycaenid caterpillar(s) and tended the caterpillars and pupae till the emergence of the butterfly. The ant‐constructed shelters (ACSs) inhabited by the minor caste workers (13 ± 1.3 ants per ACS), were utilized by the caterpillars to undergo pupation. The ants confined their activities predominantly to tending the pod‐feeding caterpillars and the solitary pupa within each ACS. It appears that the behavior of the tending worker ants is modulated by the lycaenid vulnerable stages.  相似文献   

9.
Argentine ants displace floral arthropods in a biodiversity hotspot   总被引:2,自引:1,他引:1  
Argentine ant (Linepithema humile (Mayr)) invasions are often associated with the displacement of ground‐dwelling arthropods. Argentine ant invasions can also exert other effects on the community through interactions with plants and their associated arthropods. For example, carbohydrate resources (e.g. floral or extrafloral nectar) may influence foraging behaviour and interactions among ants and other arthropods. In South Africa's Cape Floristic Region, Argentine ants and some native ant species are attracted to the floral nectar of Leucospermum conocarpodendron Rourke (Proteaceae), a native tree that also has extrafloral nectaries (EFNs). Despite having relatively low abundance in pitfall traps, Argentine ants visited inflorescences more frequently and in higher abundance than the most frequently observed native ants, Camponotus spp., though neither native nor Argentine ant floral foraging was influenced by the EFNs. Non‐metric multidimensional scaling revealed significant dissimilarity in arthropod communities on inflorescences with Argentine ants compared to inflorescences with native or no ants, with Coleoptera, Diptera, Hymenoptera, Arachnida, Orthoptera, and Blattaria all being underrepresented in inflorescences with Argentine ants compared to ant‐excluded inflorescences. Native honeybees (Apis mellifera capensis Eschscholtz) spent 75% less time foraging on inflorescences with Argentine ants than on inflorescences without ants. Neither Argentine ant nor native ant visits to inflorescences had a detectable effect on seed set of Le. conocarpodendron. However, a pollen supplementation experiment revealed that like many other proteas, Le. conocarpodendron is not pollen‐limited. Flower predation was negatively associated with increased ant visit frequency to the inflorescences, but did not differ among inflorescences visited by native and Argentine ants. Displacement of arthropods appears to be a consistent consequence of Argentine ant invasions. The displacement of floral arthropods by Argentine ants may have far‐reaching consequences for this biodiversity hotspot and other regions that are rich in insect‐pollinated plants.  相似文献   

10.
Summary Qualea grandiflora is a typical tree of Brazilian cerrados (savanna-like vegetation) that bears paired extrafloral nectaries (EFNs) along its stems. Results show that possession of EFNs increases ant density on Q. grandiflora shrubs over that of neighbouring non-nectariferous plants. Frequency of ant occupancy and mean number of ants per plant were much higher on Qualea than on plants lacking EFNs. These differences resulted in many more live termitebaits being attacked by foraging ants on Qualea than on neighbours without EFNs. Termites were attacked in equal numbers and with equal speeds on different-aged leaves of Qualea. The greatest potential for herbivore deterrence was presented by Camponotus ants (C. crassus, C. rufipes and C. aff. blandus), which together attacked significantly more termites than nine other ant species grouped. EFNs are regarded as important promoters of ant activity on cerado plants.  相似文献   

11.
F. F. Xu  J. Chen 《Insectes Sociaux》2010,57(3):343-349
In facultative ant–plant interactions, ants may compete with each other for food provided by extrafloral nectar (EFN) plants. We studied resource competition and plant defense in a guild of ants that use the same EFN resource provided by two species of Passiflora in a seasonal rain forest in tropical China. At least 22 ant species were recorded using the EFN resource, although some of those species were rare. Among these ants, Paratrechina sp.1 and Dolichoderus thoracicus were more aggressive than other species. Ant aggressiveness measured as ant behavioral dominance index (BDI) was positively correlated with ant abundance on the Passiflora species studied. Ant BDI was also positively correlated to the protection that ants provided against herbivory. In Passiflora siamica, the number of workers patrolling on the plants did negatively correlate with average leaf loss per plant. We conclude that in this facultative Passiflora–ant system, plant defense upon herbivore was indeed influenced by the total number of ants present on plant and the aggressiveness of these ants.  相似文献   

12.
Current evidence suggests that ant–plant relationships may influence species composition, abundance, and interactions at the community scale. The main resource that plants offer to ants is extrafloral nectar (EFN) and the major part of published studies shown benefits from ants to plants possessing EFNs. However, the complementary question of whether and how ants benefit from EFNs is rarely addressed. Here, we present the results of a long-term study to demonstrate whether EFN has a positive effect on ant colony fitness. We quantified colony growth rate, survival and the final weight of individuals as measures of benefit derived from EFN. Our results provide clear evidence that EFN can have a significant positive impact on the survivorship, growth and reproduction of the Myrmicinae Cephalotes pusillus. In fact, a diet rich in EFN (providing at least 30 cal per day) resulted in five times more individuals per colony, greater body weights, and more eggs. These results have shed new light on the relationships between ants and EFN-bearing plants such as in tropical and temperate systems. The ant C. pusillus is the first case in which we have firm evidence that EFN improves colony growth and development, corroborating more than 100 years of experimental evidence of benefits to plants in these widespread relationships.  相似文献   

13.
Abstract The association between visiting ants and the extrafloral nectaries (EFN)‐bearing shrub Hibiscus pernambucensis Arruda (Malvaceae) was investigated in two different coastal habitats – a permanently dry sandy forest and a regularly inundated mangrove forest. In both habitats the frequency of plants with ants and the mean number of ants per plant were much higher on H. pernambucensis than on non‐nectariferous neighbouring plants. In the sandy forest the proportion of live termite baits attacked by ants on H. pernambucensis was much higher than on plants lacking EFNs. In the mangrove, however, ants attacked equal numbers of termites on either plant class. Ant attendance to tuna/honey baits revealed that overall ant activity in the sandy forest is higher than in the mangrove area. The vertical distribution (ground vs. foliage) of ant activity also differed between habitats. While in the mangrove foraging ants were more frequent at baits placed on foliage, in the sandy forest ant attendance was higher at ground baits. Plants housing ant colonies were more common in the mangrove than in the sandy forest. Frequent flooding in the mangrove may have resulted in increased numbers of ant nests on vegetation and scattered ant activity across plant foliage, irrespective of possession of EFNs. Thus plants with EFNs in the mangrove may not experience increased ant aggression towards potential herbivores relative to plants lacking EFNs. The study suggests that the vertical distribution of ant activity, as related to different nest site distribution (ground vs. foliage) through a spatial scale, can mediate ant foraging patterns on plant foliage and probably affect the ants’ potential for herbivore deterrence on an EFN‐bearing plant species.  相似文献   

14.
Abstract.  1. The effectiveness of ants as plant defenders is equivocal for plants that attract ants via extrafloral nectaries (EFNs).
2. This study focused on the myrmecophilic savannah tree Pseudocedrela kotschyi that attracts ants to EFNs and on the arthropod fauna associated with P. kotschyi . Herbivory and arthropod community composition were compared between trees that were dominated by one of three congeneric ant species, Camponotus acvapimensis , C. rufoglaucus , and C. sericeus , and between trees where ants were experimentally excluded and untreated control trees.
3. Short-term ant-exclusion experiments failed to demonstrate a consistent effect of ants on herbivory.
4. Plants dominated by different ant species differed significantly in leaf damage caused by herbivorous insects. The relative ranking of herbivory levels of the trees dominated by different ant species was persistent in three consecutive years.
5. Ants significantly reduced the abundance of different arthropod groups (Araneae, Blattodea, Coleoptera, Homoptera, non-ant Hymenoptera). Other groups, including important herbivores, seemed not to be affected (Lepidoptera, Orthoptera, Thysanoptera, Heteroptera).
6. The study suggests that the presence of ants only benefits plants when specific ant species are attracted, and protection by these ants is not counterbalanced by their negative effect on other beneficial arthropods.  相似文献   

15.
1. Plant–animal mutualisms are key processes that influence community structure, dynamics, and function. They reflect several neutral and niche-based mechanisms related to plant–animal interactions. 2. However, the strength with which these processes influence community structure depends on functional traits that influence the interactions between mutualistic partners. In mutualisms involving plants and ants, nectar is the most common reward, and traits such as quantity and quality can affect ant species' responses by influencing their recruitment rates and aggressiveness. 3. In this study, nectar traits that mediate ant–plant defensive mutualisms were manipulated to test whether resource quantity and quality affect the structure of ant–plant interaction networks. A downscaling approach was used to investigate the interaction network between ant species and individual plants of the extrafloral nectary-bearing terrestrial orchid Epidendrum secundum. 4. We found a short-term reorganization of the ant assemblage that caused the interaction networks to become more specialised and modular in response to a more rewarding nectar gradient. Furthermore, the ant species tended to narrow their foraging range by limiting their associations to one or a few individual plants. 5. This study shows that ant species' responses to variable resource traits play an important role in the structure of the ant–plant interaction network. We suggest that more rewarding nectar enhanced aggressiveness and a massive recruitment of some ant species, leading to lower niche overlap and thus a less connected and more specialised network.  相似文献   

16.
1. Predatory ants may reduce infestation by herbivorous insects, and slow‐moving Lepidopteran larvae are often vulnerable on foliage. We investigate whether caterpillars with morphological or behavioural defences have decreased risk of falling prey to ants, and if defence traits mediate host plant use in ant‐rich cerrado savanna. 2. Caterpillars were surveyed in four cerrado localities in southeast Brazil (70–460 km apart). The efficacy of caterpillar defensive traits against predation by two common ant species (Camponotus crassus, C. renggeri) was assessed through experimental trials using caterpillars of different species and captive ant colonies. 3. Although ant presence can reduce caterpillar infestation, the ants' predatory effects depend on caterpillar defence traits. Shelter construction and morphological defences can prevent ant attacks (primary defence), but once exposed or discovered by ants, caterpillars rely on their size and/or behaviour to survive (secondary defence). 4. Defence efficiency depends on ant identity: C. renggeri was more aggressive and lethal to caterpillars than C. crassus. Caterpillars without morphological defences or inside open shelters were found on plants with decreased ant numbers. No unsheltered caterpillar was found on plants with extrafloral nectaries (EFNs). Caterpillars using EFN‐bearing plants lived in closed shelters or presented morphological defences (hairs, spines), and were less frequently attacked by ants during trials. 5. The efficiency of defences against ants is thus crucial for caterpillar survival and determines host plant use by lepidopterans in cerrado. Our study highlights the effect of EFN‐mediated ant‐plant interactions on host plant use by insect herbivores, emphasizing the importance of a tritrophic viewpoint in risky environments.  相似文献   

17.
The effects of direct and indirect defenses differ among plant species, and the variation in the mode of plant defenses might reflect physiological and/or ecological constraints of each mode of defense related to the growth and reproduction of individual plant species. To evaluate the advantages and disadvantages of indirect ant-mediated defense via extrafloral nectaries (EFNs), we compared the herbivory pressure, leaf chemicals, vegetative growth, and reproduction between two species of vetches, Vicia sativa var. angustifolia (Reichard) Wahlenb (Leguminosae) with EFNs and V. hirsuta (L.) SF Gray without EFNs (or with very small EFNs). Indirect ant defense of V. sativa was not consistently reliable because of the low constancy of ant attraction. In addition, V. sativa was more vulnerable to attack by herbivores than V. hirsuta. The estimated total amount of sugars secreted by EFNs of V. sativa corresponded to 0.5% of total leaf biomass, and 0.07% of total plant biomass, indicating a low investment to the production of extrafloral nectar. Vicia sativa plants grew more rapidly than V. hirsuta plants during the reproductive stage. Therefore, we consider that V. sativa adopts the ant defense via EFNs in spite of its low reliability because the indirect ant defense supported by EFNs requires only low investment, allowing the plants to attain rapid growth in the early spring.  相似文献   

18.

Background and Aims

Early ontogenetic stages of myrmecophytic plants are infrequently associated with ants, probably due to constraints on the production of rewards. This study reports for the first time the anatomical and histological limitations constraining the production of extrafloral nectar in young plants, and the implications that the absence of protective ants imposes for plants early during their ontogeny are discussed.

Methods

Juvenile, pre-reproductive and reproductive plants of Turnera velutina were selected in a natural population and their extrafloral nectaries (EFNs) per leaf were quantified. The anatomical and morphological changes in EFNs during plant ontogeny were studied using scanning electron and light microscopy. Extrafloral nectar volume and sugar concentration were determined as well as the number of patrolling ants.

Key Results

Juvenile plants were unable to secrete or contain nectar. Pre-reproductive plants secreted and contained nectar drops, but the highest production was achieved at the reproductive stage when the gland is fully cup-shaped and the secretory epidermis duplicates. No ants were observed in juvenile plants, and reproductive individuals received greater ant patrolling than pre-reproductive individuals. The issue of the mechanism of extrafloral nectar release in T. velutina was solved given that we found an anatomical, transcuticular pore that forms a channel-like structure and allows nectar to flow outward from the gland.

Conclusions

Juvenile stages had no ant protection against herbivores probably due to resource limitation but also due to anatomical constraints. The results are consistent with the growth-differentiation balance hypothesis. As plants age, they increase in size and have larger nutrient-acquiring, photosynthetic and storage capacity, so they are able to invest in defence via specialized organs, such as EFNs. Hence, the more vulnerable juvenile stage should rely on other defensive strategies to reduce the negative impacts of herbivory.  相似文献   

19.
Extrafloral nectar of plants and honeydew of hemipterans are the common mediators of facultative interactions that involve ants as a mobile strategy of defence. The outcome of these interactions can vary from mutualistic to commensalistic or even antagonistic, depending on the ecological context and the interacting species. Here, we explore a novel, three-partner interaction involving ants, the coreid Dersagrena subfoveolata (Hemiptera) and the extrafloral nectaries (EFNs) bearing plant Senna aphylla (Fabaceae) in semi-arid Northwest Argentina. We surveyed natural areas and conducted ant exclusion experiments, to understand how each pairwise interaction influences the overall outcome among the three interacting parts. The outcome of the interactions was assessed for experimental plants as the reproductive output and herbivore abundances and for coreids as predator abundances. We found that the coreids occurred exclusively on S. aphylla plants and that at least nine ant species interacted with the EFNs as well as with the coreids. Coreid occurrence and abundance depended on ant densities, which in turn, was determined by the presence of actively secreting EFNs. Coreid and ant presence did not influence plant reproductive success, and ants provided to coreids some biotic defence, mainly against vespid wasp predators, but had no effect on non-coreid herbivores. We conclude that the interaction outcome is commensalistic between ants and plants (assuming that EF nectar is not costly for the plant), antagonistic between coreids and plants, and mutualistic between coreids and ants. The sum of all outcomes is net positive effect for ants and coreids, and net slightly negative to neutral for plants.  相似文献   

20.
Many plants secrete nectar from extrafloral nectaries (EFNs), specialized structures that usually attract ants which can act as plant defenders. We examined the nectar-mediated interactions between Chamaecrista nictitans (Caesalpineaceae) and jumping spiders (Araneae, Salticidae) for 2 years in old fields in New Jersey, USA. Previous research suggests that spiders are entirely carnivorous, yet jumping spiders (Eris sp. and Metaphidippus sp.) on C. nictitans collected nectar in addition to feeding on herbivores, ants, bees, and other spiders. In a controlled-environment experiment, when given a choice between C. nictitans with or without active EFNs, foraging spiders spent 86% of their time on plants with nectar. C. nictitans with resident jumping spiders did set significantly more seed than plants with no spiders, indicating a beneficial effect from these predators. However, the presence of jumping spiders did not decrease numbers of Sennius cruentatus (Bruchidae), a specialist seed predator of C. nictitans. Jumping spiders may provide additional, unexpected defense to plants possessing EFNs. Plants with EFNs may therefore have beneficial interactions with other arthropod predators in addition to nectar-collecting ants. Received: 27 May 1998 / Accepted: 23 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号