首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Bacterial profile modification (BPM) is being developed as an oil recovery technique that uses bacteria to selectively plug oil depleted zones within a reservoir to divert displacing fluids (typically water) into oil-rich zones. Leuconostoc mesenteroides, which produces dextran when supplied with sucrose, is a bacterium that is technically feasible for use in profile modification. However, the technique requires controlled bacterial growth to produce selective plugging.A kinetic model for the production of cells and polysaccharides has been developed for L. mesenteroides bacteria. This model, based on data from batch growth experiments, predicts saccharide utilization, cell generation, and dextran production. The underlying mechanism is the extracellular breakdown of sucrose into glucose and fructose and the subsequent production of polysaccharide (dextran). The monosaccharides are then available for growth. Accompanying sucrose consumption is the utilization of yeast extract. The cell requires a complex media that is provided by yeast extract as a source of vitamins and amino acids. Varying the concentration ratio of yeast extract to sucrose in the growth media provides a means of controlling the amount of polymer produced per cell. Consequently, in situ bacteria growth can be controlled by the manipulation of nutrient media composition, thereby providing the ability to create an overall strategy for the use of L. mesenteroides bacteria for profile modification.  相似文献   

2.
Bacterial profile modification (BPM), a form of tertiary oil recovery, diverts water from the water-flooded high-permeability zone into the oil-bearing low-permeability zone. During field use, exopolymer-producing bacteria plug the high-permeability zone only in the immediate vicinity of the injection point (the near-well bore region). For effective BPM the plug must penetrate far into the formation. Slowing the specific growth rate, lengthening the lag phase, and slowing the polymerization rate are techniques that can prolong the onset of biopolymer gelation and extend the depth of the biological plug. In batch experiments, the growth of Leuconostoc mesenteroides NRRL-B523 was inhibited by the synergistic effects of high substrate loading and an alkaline pH. Exponential growth was delayed up to 190 h. It was observed that cell division was significantly retarded until the medium pH, reduced by the acid byproducts of fermentation, reached a critical value of 6.79 +/- 0.06. A mathematical model was developed to describe the relationship between specific growth rate, lag time, and medium pH.  相似文献   

3.
Water activity is a method of preservation that can affect microbial growth in foods and that may fluctuate during their processing, distribution and storage. Sucrose has been used to change the water activity of microbiological culture media. Suspensions of Salmonella typhimurium LT2 in the exponential phase of growth have been subjected to step changes in sucrose concentration at 20°C. The changes in the numbers of viable bacteria were measured with time and the experimental growth curves compared with predictions based on growth data obtained at constant sucrose concentrations. Steps down in sucrose concentration showed some apparent loss of viability after the step followed by growth at a rate close to the expected value. Steps up in sucrose concentration resulted in a greater apparent loss of viability after the step and either growth or the inducement of lag, depending on the final concentration of sucrose. A series of small steps up in sucrose concentration to 45% (w/v) was able to sustain growth where it was not possible by inoculation directly into this concentration. Improved recovery of bacteria subject to osmotic stress was possible with a medium containing sodium chloride.  相似文献   

4.
Water and sucrose regulate canola embryo development   总被引:1,自引:0,他引:1  
The effect of water and sucrose on the growth and development of zygotic, 30-day-old canola ( Brassica napus L. cv. Bounty) embryos was examined in vitro by manipulating the levels of sucrose and/or sorbitol present in the culture medium. In some experiments, the medium water potential was allowed to vary with sucrose concentration, while in other experiments, the medium water potential was held constant by adding sorbitol to varying amounts of sucrose. Our results showed that embryos cultured on sorbitol alone exhibited two developmental patterns: embryos germinated precociously on media containing up to 0.70 M sorbitol, whereas embryos became yellow and quiescent on media with higher concentrations of sorbitol. For embryos cultured on media containing sucrose alone, three distinct developmental patterns were noted: at low sucrose concentrations, embryos germinated precociously; at intermediate concentrations, embryos continued to grow in an embryonic mode; and, at high concentrations, embryos became yellow and quiescent. Continued embryonic growth was never observed in embryos cultured on media containing sorbitol alone. Embryos never germinated precociously when cultured on media maintained at a constant water potential of -1.4 MPa, rather dry weight increased in these embryos with an increase in sucrose concentration. We envision the effect of sucrose on embryo growth and development to be nested within the effect of water availability. When water availability is restricted, embryos become quiescent. When water is available, embryos have the potential to grow, but the developmental growth pattern depends on the availability of sucrose. In the absence of sucrose, embryos germinate and initiate the transition to autotrophy. If sufficient sucrose is available, embryos remain photohet-erotrophic and continue to grow in an embryonic mode.  相似文献   

5.
Streptococcus mutans was cultivated in media containing sucrose (10–40%, w/v) and the sucrose induced changes in chemical and physical properties of its membrane lipids were investigated. The degree of unsaturation in the fatty acids of both total lipid and glycolipid fractions decreased when the sucrose concentration was increased. An electron spin resonance spectroscopic study revealed the reduction of membrane lipid fluidity by adding sucrose to the growth medium. Liposomes prepared from membrane lipids of bacteria grown with sucrose showed less osmotic volume changes than those of bacteria grown without sucrose. These results suggest that modification of membrane lipid composition, fluidity and osmosis-resistance have an important role in the ability of Streptococcus mutans to grow in sucrose at high concentrations.  相似文献   

6.
In this study, we determined the internal cellular pH response of Leuconostoc mesenteroides and Lactobacillus plantarum to the external pH created by the microorganisms themselves or by lactic or acetic acids and their salts added to the growth medium. Growth of Leuconostoc mesenteroides stopped when its internal pH reached 5.4 to 5.7, and growth of L. plantarum stopped when its internal pH reached 4.6 to 4.8. Variation in growth medium composition or pH did not alter the growth-limiting internal pH reached by these microorganisms. L. plantarum maintained its pH gradient in the presence of either 160 mM sodium acetate or sodium lactate down to an external pH of 3.0 with either acid. In contrast, the DeltapH of Leuconostoc mesenteroides was zero at pH 4.0 with acetate and 5.0 with lactate. No differences were found between d-(-)- and l-(+)-lactic acid for the limiting internal pH for growth of either microorganism. The comparatively low growth-limiting internal pH and ability to maintain a pH gradient at high organic acid concentration may contribute to the ability of L. plantarum to terminate vegetable fermentations.  相似文献   

7.
A thermotolerant alcohol-producing yeast strain, Kluyveromyces marxianus IMB3 was shown to grow on sucrose (10% [w/v]) containing media at 45 °C. Under such conditions the organism reached stationary phase within 20 hours and yielded ethanol concentrations in the region of 33g/L. During growth on sucrose containing media the organism was found to produce a cell- associated activity capable of hydrolysing sucrose. This activity was shown to have a Km of 5.0mM when sucrose was used as the substrate. In addition the enzyme was shown to have a pH optimum of 5.0 and a temperature optimum of 50–55 °C and under those conditions the enzyme was shown to be relatively thermostable.  相似文献   

8.
It was shown that Escherichia coli is able to grow in anaerobic conditions in hyperosmotic media containing 0.5 M sodium chloride or equivalent amount of sucrose. However, in the presence of 0.5 M NaCl, bacterial growth rate and the intensity of oxidation-reduction processes decrease, and the production of molecular hydrogen is absent. Growth rate in the presence of 0.5 M NaCl is four times lower than that in the presence of sucrose. Under hyperosmotic stress by 0.5 M NaCl but not by equivalent amount of sucrose, the uptake of K+ with a high rate is observed. Proline is able to increase the growth rate and the intensity of oxidation-reduction processes and to restore the production of molecular hydrogen as well as to induce the uptake of K+ with a high rate under a hyperosmotic stress. Such effects are observed at pH 7.5 and are absent at pH 5.5. Proline also increases cell size independently of medium pH. It is likely that the effect of proline on oxidation-reduction processes and production of H2 is mediated through the accumulation of K+ in bacteria.  相似文献   

9.
The effects of fatty acids and their glycerol and sucrose esters, potassium sorbate, and sodium benzoate on growth of Vibrio parahaemolyticus in laboratory media at pH 6.7 were evaluated. The minimum concentrations at which inhibition by esters of glycerol could be detected were lowest for monolaurin (5 microgram/ml) and monocaprin (40 microgram/ml); these concentrations were lower than those observed for inhibition by lauric and capric acids, respectively. Inhibitory action of sucrose caprylate was detected at 40 microgram/ml, whereas sucrose caprate was effective at 100 microgram/ml; sucrose esters of lauric, myristic, and palmitic acids were ineffective at 100 microgram/ml. Potassium sorbate and sodium benzoate inhibited growth at concentrations as low as 30 and 300 microgram/ml, respectively, and enhanced the rate of thermal inactivation of V. parahaemolyticus at slightly higher concentrations. Fatty acid esters of glycerol and sucrose offer potential as perservatives for slightly acid or alkaline low-fat foods which do not lend themselves to the full antimicrobial action of traditional food preservatives such as potassium sorbate and sodium benzoate.  相似文献   

10.
向日葵的幼胚培养   总被引:3,自引:0,他引:3  
实验所用的基本培基中以B_5培养基对向日葵幼胚培养为最适。激素萘乙酸主要促进幼胚的胚性生长。吲哚乙酸(IAA)与激动素(KT)的配合使用,对幼胚的分化起明显的调节作用。天然提取物则明显地促进幼胚生长、其中荸荠汁的培养基可使向日葵球形胚进行正常发育。 用两种改良的B_5培养基做胚胎培养系统,使向日葵种间杂交胚生长发育。先将杂交后的心形胚培养在胚胎生长培养基上,进行充分的胚性生长。然后把胚转移到萌发培养基,使其萌发形成幼苗,最后移入土壤直至开花。  相似文献   

11.
AIMS: Combinations of sodium chloride and acid are frequently used to inhibit growth of spoilage and pathogenic bacteria in food. The influence of differing sodium chloride, lactate and pH values on the growth of stressed and unstressed cells of a non-toxigenic strain of Escherichia coli O157:H7 was studied. METHODS AND RESULTS: At pH 5.5 or 6.0, there was little or no effect on the growth rate in the presence of lactate and/or sodium chloride, but the lag times were longer as the lactate concentration increased. At pH 5.0, in the absence of sodium chloride, increasing the lactate concentration increased the growth rate and the lag time; no growth occurred in the presence of 1.5 g 100 g(-1) lactate. In the presence of 4-6 g 100 g(-1) sodium chloride, growth occurred at 1.5 g 100 g(-1) lactate. The growth rate was similar at all lactate concentrations. CONCLUSION: The results demonstrate that the presence of sodium chloride promoted growth of E. coli O157:H7, especially under stressful conditions of low pH. Significance and Impact of the Study: These findings could have implications for the use of acid and sodium chloride as a preservation treatment for the inhibition of E. coli O157:H7 in food.  相似文献   

12.
N Uraih  J R Chipley 《Microbios》1976,17(67):51-59
The effects of sodium chloride, sodium acetate, benzoic acid, sodium benzoate, malonic acid, and sodium malonate on growth and aflatoxin production by Aspergillus flavus were investigated in synthetic media. Sodium chloride at concentrations equivalent to or greater than 12 g/100 ml inhibited growth and aflatoxin production, while at 8 g or less/100 ml, growth and aflatoxin production were stimulated. At 2 g or less/100 ml, sodium acetate also stimulated growth and aflatoxin production, but reduction occurred with 4 g or more/100 ml. Malonic acid at 10, 20, 40, and 50 mM reduced growth and aflatoxin production (over 50%) while sodium malonate at similar concentrations but different pH values had the opposite effect. Benzoic acid (pH 3.9) and sodium benzoate (pH 5.0) at 0.4 g/100 ml completely inhibited growth and aflatoxin production. Examination of the effect of initial pH indicated that the extent of inhibitory action of malonic acid and sodium acetate was a function of initial pH. The inhibitory action of benzoic acid and sodium benzoate appeared to be a function of undissociated benzoic acid molecules. Aflatoxin reduction was usually accompanied by an unidentified orange pigment, while aflatoxin stimulation was accompanied by unidentified blue and green fluorescent spots but with lower Rf values that aflatoxins B1, G1, B2, and G2 standards.  相似文献   

13.
采用平板分离和培养瓶厌氧技术,结合PCR扩增技术,以沙曲矿煤为发酵基底,中泰矿业和沙曲矿井水及白腐菌为菌种来源,进行产甲烷菌培养实验,并添加不同浓度梯度的EDTA二钠,进行产甲烷菌培养实验,测定实验结束后的产甲烷量。实验证明:中泰矿业矿井水中有产甲烷菌的存在,而沙曲矿井水在含反硝化菌和pH偏高的情况下,抑制了产甲烷菌的生长。同等条件下沙曲矿批次实验中没有甲烷气体的产生,而中泰矿业的有气体产出,适宜浓度的EDTA二钠浓度会显著提高产气量,EDTA二钠用量为1.0 g/L时,中泰矿井水CH4产率达到最大,为10.0 mL/g煤,反应后溶液的pH值明显增高。  相似文献   

14.
Growth characteristics of corn stunt spiroplasma, a helical, motile mycoplasma, were studied over a range of osmolality, pH, and temperature in a simple medium containing 20% (v/v) agamma horse serum, 1.5% (w/v) PPLO broth, and various concentrations of sucrose. The spiroplasma was able to grow in a wide spectrum of osmolalities from 360 to 1120 mosm. Optimal growth was observed in media that contained 0.25-0.35 M sucrose. The organism became longer and thinner in media adjusted to 0.65 M sucrose or more. The spiroplasma lost helicity and motility immediately after transfer to media at pH 5.4 or lower. Optimal pH for growth was 7.2. No growth was observed at pH lower than 5.4 or higher than 8.0. Optimal temperature for growth was 32 degrees C. Very little or no growth was observed at temperatures lower than 15 degrees C or higher than 35 degrees C.  相似文献   

15.
An anaerobic, motile, gram-negative, rod-shaped, syntrophic, benzoate-degrading bacterium, strain SB, was isolated in pure culture with crotonate as the energy source. Benzoate was degraded only in association with an H2-using bacterium. The kinetics of benzoate degradation by cell suspensions of strain SB in coculture with Desulfovibrio strain G-11 was studied by using progress curve analysis. The coculture degraded benzoate to a threshold concentration of 214 nM to 6.5 microM, with no further benzoate degradation observed even after extended incubation times. The value of the threshold depended on the amount of benzoate added and, consequently, the amount of acetate produced. The addition of sodium acetate, but not that of sodium chloride, affected the threshold value; higher acetate concentrations resulted in higher threshold values for benzoate. When a cell suspension that had reached a threshold benzoate concentration was reamended with benzoate, benzoate was used without a lag. The hydrogen partial pressure was very low and formate was not detected in cell suspensions that had degraded benzoate to a threshold value. The Gibbs free energy change calculations showed that the degradation of benzoate was favorable when the threshold was reached. These studies showed that the threshold for benzoate degradation was not caused by nutritional limitations, the loss of metabolic activity, or inhibition by hydrogen or formate. The data are consistent with a thermodynamic explanation for the existence of a threshold, but a kinetic explanation based on acetate inhibition may also account for the existence of a threshold.  相似文献   

16.
一株可溶性有机磷去除菌的分离及其生物学特性   总被引:1,自引:1,他引:0  
以甘油磷酸钠(Sodium Glycerophosphate,以下简称NaGly)作为外源可溶性有机磷,从富营养化的养殖池污泥中分离到5株可溶性有机磷去除菌株,通过除磷率比较,筛选出一株最为高效的菌株D2,其对初始浓度为5mg/L甘油磷酸盐磷(Phosphorus Glycerophosphate,以下简称GP-P)的去除率可达99.0%。此外,对其进行了16SrRNA基因序列测定,并进一步研究了其生长特性与除磷特性。试验结果表明,菌株D2为肠球菌(Enterococcus sp.),与屎肠球菌(Enterococcus faecium)菌株KT4S13(登录号:AB481104)和CICC6078(登录号:DQ672262)的16SrRNA基因序列相似性近100%;其生长周期为:0-4h为生长迟缓期,4-8h为对数生长期,8-28h为稳定期,28h以后为衰亡期;且在15°C-40°C、pH4.0-9.0以及5-40mg/LGP-P条件下均能够生长,其中菌株D2最适生长的温度范围和pH范围分别为30°C-35°C、6.0-7.0,而且20-30mg/LGP-P能显著促进菌株D2生长。此外,菌株D2在进入衰亡期之前随着作用时间的延长,对20mg/LGP-P的除磷率逐渐升高,在进入衰亡期后的28-32h内对20mg/LGP-P的除磷效果趋于稳定,其在15°C-40°C、pH4.0-9.0以及5-40mg/LGP-P条件下均具有除磷作用,其最适除磷温度范围、pH范围和GP-P浓度范围分别为25°C-35°C、6.0-7.0和5-10mg/L。  相似文献   

17.
曼陀罗茎段愈伤组织诱导和再生植株的研究   总被引:2,自引:0,他引:2  
本试验以曼陀罗茎段为外植体,在附加不同植物激素组合的培养基中对愈伤组织的诱导和植株再生进行研究。结果表明:采用修改的MS培养基(除去甘氨酸,维生素B1含量增加至0.5mg/L,pH5.5)附加2mg/L2,4-D可由曼陀罗茎段诱导大量胚性愈伤组织;愈伤组织继代选用0.5mg/L2,4-D为宜;不定芽的诱导采用MS培养基(20g蔗糖,8g琼脂,0.1g水解干酪素) 6-BA(0.5mg/L);幼苗进一步转接至1/2MS IBA(0.2mg/L)生根培养基中,可完成曼陀罗茎段愈伤组织诱导和再生植株的组织培养过程。  相似文献   

18.
A Box-Behnken design with three variables (sucrose concentration, initial pH value and soaking time) and three levels were used for studying the demineralization efficiency in fermented shrimp shells by Pediococcus sp. L1/2. First, the bacterial cells were inoculated into the media with various concentrations of sucrose and initial pH values, and fermentation took place under static conditions at 37 degrees C for 24h. Significant differences in the levels of total titratable acid were observed. This was followed by adding shrimp shells and soaking them in the fermentation media for 12, 24 and 36 h. The results showed that when the sucrose concentration was 50 g/L, and the initial pH value was 6.00, soaking for 36 h gave a demineralization efficiency of 68.38%. By solving the equation and also analyzing the response surface contour plots, optimum conditions occurred when the sucrose concentration was 50 g/L, the initial pH value was 7.00 and the soaking time was 36 h with a predicted value of demineralization of 83.03% whereas our experiment gave 83.47%.  相似文献   

19.
AIMS: The efficiency of trehalose, sucrose and maltose to protect Lactobacillus bulgaricus during drying has been evaluated in bacteria grown at low water activity. METHODS AND RESULTS: Bacteria were grown in MRS (control), and in MRS supplemented with sucrose (MRS-sucrose) or with polyethyleneglycol (PEG) (MRS-PEG) as low water activity media. The growth in low water activity media (MRS-sucrose and MRS-PEG) prior to drying enhanced the effectiveness of trehalose as thermoprotectant during drying. The efficiency of sucrose was improved when bacteria were grown in MRS-sucrose. On the other hand, the growth in both low water activity media did not affect the efficiency of maltose. The damage produced during dehydration has been evaluated by means of growth kinetics in milk. The preservation of bacteria dehydrated with sucrose, after growing them in MRS-sucrose, appears to be as efficient as the dehydration with trehalose. CONCLUSIONS: The growth of L. bulgaricus in low water activity media enhances the protective action of trehalose and sucrose. SIGNIFICANCE AND IMPACT OF THE THE STUDY: These results may aid the dairy industry to improve the recovery of the starters at low costs after preservation processes.  相似文献   

20.
On the basis of high enzyme activity a newly isolated strain of L. mesenteroides CMG713 was selected for dextran production. For maximum yield of dextran, effects of various parameters such as pH, temperature, sucrose concentration and incubation period were studied. L. mesenteroides CMG713 produced maximum dextran after 20 hours of incubation at 30 masculineC with 15% sucrose at pH 7.0. The molecular mass distribution of dextran produced by this strain showed that its molecular mass was about 2.0 million Da. Dextran analysis by (13)C-NMR spectrometry showed no signals corresponding to any other linkages except alpha-(1-->6) glycosidic linkage in the main chain, which has not been reported before. Physico-chemical properties of this unique dextran were also studied. These optimised conditions could be used for the commercial production of this unique high molecular weight dextran, which have significant industrial perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号