首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aflatoxin production by a toxigenic strain of Aspergillus flavus was greatly reduced by benzoic acid and sodium benzoate in synthetic media. The reduction was accompanied by the appearance of a yellow pigment. Spectral analyses partially characterized this pigment as closely related to an acetyl derivative of a versiconal-type compound. A cell-free extract prepared from A. flavus grown in synthetic media was active in converting this yellow compound into aflatoxin B1 in the presence of reduced nicotinamide adenine dinucleotide phosphate at 25 degrees C (pH 7.4). In the presence of benzoic acid and its salt or autoclaved cell-free extract, conversion of yellow compound to aflatoxin B1 was prevented. These results suggest that the yellow compound is an intermediate in the secondary metabolic cycle involved in aflatoxin B1 production. Benzoic acid, sodium benzoate, or autoclaving the cell-free extract appear to have respectively blocked or denatured an enzymatic step late in the biosynthetic pathway of aflatoxin B1.  相似文献   

2.
We have treated a wild type strain of Aspergillus parasiticus with several known aflatoxin inhibitors in hopes of finding specific metabolic blocks in the aflatoxin biosynthetic pathway. In defined medium, benzole acid (2 and 3 mg/ml), cinnamon (1 mg/ml), and sodium acetate (5 mg/ml) were fungitoxic. Benzoic acid (0.5 and 1 mg/ml), chlorox (5 l/ml), and dimethyl sulfoxide (5 l/ml) did not affect dry weight or mycelial pigmentation. Sodium benzoate (1, 2, 4 and 8 mg/ml) added after 2 days growth inhibited aflatoxin production in two defined media. We were unable to confirm previously published reports that an uncharacterized yellow pigment accumulates with benzoate-inhibition of aflatoxin biosynthesis.  相似文献   

3.
山苍子油对霉菌抗菌性及其与黄曲霉产毒关系的研究   总被引:21,自引:0,他引:21  
余伯良   《微生物学通报》1998,25(3):144-147
采用平板法比较天然增香剂山苍子油与合成食用防腐剂苯甲酸钠、山梨酸钾对8种霉菌的抗菌效力。结果表明,在培养基pH4.5时山苍子油对多数霉菌的最低抑菌浓度为1.77mg/ml,与山梨酸钾的抑菌强度相近,比苯甲酸钠强;但当培养基pH5.5以上时苯甲酸钠对霉菌几乎无效,山梨酸钾的抗菌效力也有减弱,而山苍子油受影响很小,其活性pH范围为4.5~8.5。山苍子油用脂肪酸蔗糖酯乳化,其抗菌效力增强一倍。同时,从山苍子油与黄曲霉产毒关系的实验中发现,山苍子油对黄曲霉产生黄曲霉毒素有较强的抑制作用。  相似文献   

4.
The effects of the elements zinc, manganese, iron, copper, molybdenum, and vanadium, added in various salt forms, on mycelial weights and aflatoxin B1 accumulation in the mycelium of Aspergillus flavus were investigated in liquid shake cultures. Ammonium heptamolybdate, when added to a complete medium at concentrations of 50-100 mg/L, appreciably reduced aflatoxin B1 accumulation without affecting growth of the fungus. Sodium molybdate and sodium monovanadate also reduced aflatoxin B1 yields without affecting mycelial growth but to a lesser extent. The addition of zinc sulphate stimulated aflatoxin B1 production in all media used. The influence of the other trace elements on aflatoxin production depended on the level of trace elements present in the basal medium. In general, manganese chloride had a stimulatory effect, whereas copper sulphate depressed yields. Mycelial levels of aflatoxin had peaked and then declined before mycelial dry weights had reached maximum. High yields of aflatoxin B1 were obtained in media having a final pH as low as pH 2.8.  相似文献   

5.
The effects of fatty acids and their glycerol and sucrose esters, potassium sorbate, and sodium benzoate on growth of Vibrio parahaemolyticus in laboratory media at pH 6.7 were evaluated. The minimum concentrations at which inhibition by esters of glycerol could be detected were lowest for monolaurin (5 microgram/ml) and monocaprin (40 microgram/ml); these concentrations were lower than those observed for inhibition by lauric and capric acids, respectively. Inhibitory action of sucrose caprylate was detected at 40 microgram/ml, whereas sucrose caprate was effective at 100 microgram/ml; sucrose esters of lauric, myristic, and palmitic acids were ineffective at 100 microgram/ml. Potassium sorbate and sodium benzoate inhibited growth at concentrations as low as 30 and 300 microgram/ml, respectively, and enhanced the rate of thermal inactivation of V. parahaemolyticus at slightly higher concentrations. Fatty acid esters of glycerol and sucrose offer potential as perservatives for slightly acid or alkaline low-fat foods which do not lend themselves to the full antimicrobial action of traditional food preservatives such as potassium sorbate and sodium benzoate.  相似文献   

6.
A study was conducted to determine the effects of o-nitrobenzoate, p-aminobenzoate, benzocaine (ethyl aminobenzoate), ethyl benzoate, methyl benzoate, salicylic acid (o-hydroxybenzoate), trans-cinnamic acid (beta-phenylacrylic acid), trans-cinnamaldehyde (3-phenylpropenal), ferulic acid (p-hydroxy-3-methoxycinnamic acid), aspirin (o-acetoxy benzoic acid), and anthranilic acid (o-aminobenzoic acid) upon growth and aflatoxin release in Aspergillus flavus NRRL 3145 and A. parasiticus NRRL 3240. A chemically defined medium was supplemented with various concentrations of these compounds and inoculated with spores, and the developing cultures were incubated for 4, 6, and 8 days at 27 degree C in a mechanical shaker. At the beginning of day 8 of incubation, aflatoxins were extracted from cell-free filtrates, separated by thin-layer chromatography, and quantitated by ultraviolet spectrophotometry. The structure of these aromatic compounds appeared to be critically related to their effects on mycelial growth and aflatoxin release. At concentrations of 2.5 and 5.0 mg per 25 ml of medium, methyl benzoate and ethyl benzoate were the most effective in reducing both mycelial growth and aflatoxin release by A. flavus and A. parasiticus. Inhibition of mycelial growth and aflatoxin release by various concentrations of the above-named aromatic compounds may indicate the possibility of their use as fungicides.  相似文献   

7.
The production of acetic acid by Clostridium thermoaceticum was studied by using batch fermentations. In a pH-controlled fermentation with sodium hydroxide (pH 6.9), this organism was able to produce 56 g of acetic acid per liter. On the other hand, when the pH was not controlled and was decreased during fermentation to 5.4, the maximum attainable acetic acid concentration was only 15.3 g/liter. To obtain a better understanding of the end product inhibition, various salts were tested to determine their effect on the growth rate of C. thermoaceticum. An inverse linear relationship between the growth rate and the final cell concentration to the sodium acetate concentration was found. By using different concentrations of externally added sodium salts, the relative growth inhibition caused by the anion was found to be in the order of acetate > chloride > sulfate. Various externally added cations of acetate were also examined with respect to their inhibitory effects on growth. The relative magnitude of inhibition on the growth rate was found to be ammonium > potassium > sodium. The combined results have shown that the undissociated acetic acid was much more inhibitory than the ionized acetate ion. Complete growth inhibition resulted when the undissociated acetic acid concentration was between 0.04 and 0.05 M and when the ionized acetate concentration was 0.8 M. Therefore, at low pH (below 6.0), undissociated acetic acid is responsible for growth inhibition, and at high pH (above 6.0), ionized acetate ion is responsible for growth inhibition.  相似文献   

8.
Yeasts grown in the presence of benzoic acid tolerated 40 to 100% higher benzoic acid concentrations than did those grown in the absence of weak-acid-type preservatives. They also accumulated less benzoate in the presence of glucose. In chemostat cultures, benzoic acid reduced growth yield and the rate of cell production but increased specific fermentation rates. Benzoate contents were lower than those required for equilibrium when cells were impermeable to benzoate anion. Intracellular pHs were maintained near neutrality. Between species, stimulation of fermentation was inversely related to preservation resistance but was unrelated to the maximum rate of fermentation. The results show that a major effect of benzoic acid on yeasts in the presence of an energy source is the energy requirement for the reduction in cytoplasmic benzoate concentration and maintenance of pH. This energy source is unavailable for growth, resulting in lower growth yields and rates. Resistant species may be less permeable to undissociated benzoic acid.  相似文献   

9.
AIMS: Combinations of sodium chloride and acid are frequently used to inhibit growth of spoilage and pathogenic bacteria in food. The influence of differing sodium chloride, lactate and pH values on the growth of stressed and unstressed cells of a non-toxigenic strain of Escherichia coli O157:H7 was studied. METHODS AND RESULTS: At pH 5.5 or 6.0, there was little or no effect on the growth rate in the presence of lactate and/or sodium chloride, but the lag times were longer as the lactate concentration increased. At pH 5.0, in the absence of sodium chloride, increasing the lactate concentration increased the growth rate and the lag time; no growth occurred in the presence of 1.5 g 100 g(-1) lactate. In the presence of 4-6 g 100 g(-1) sodium chloride, growth occurred at 1.5 g 100 g(-1) lactate. The growth rate was similar at all lactate concentrations. CONCLUSION: The results demonstrate that the presence of sodium chloride promoted growth of E. coli O157:H7, especially under stressful conditions of low pH. Significance and Impact of the Study: These findings could have implications for the use of acid and sodium chloride as a preservation treatment for the inhibition of E. coli O157:H7 in food.  相似文献   

10.
Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.  相似文献   

11.
Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.  相似文献   

12.
Incorporation of [I-14C]acetate and [2-14C]malonate into aflatoxins by resting mycelia of Aspergillus parasiticus resuspended in different buffers was studied. A decrease in pH from 5-8 to 2-8, as well as addition of EDTA, markedly stimulated the incorporation of malonate but the effect on acetate incorporation was less pronounced. Mycelia took up comparatively more acetate than malonate, but more malonate (4-3%) entering mycelia was incorporated into aflatoxins than was acetate (1-6%). Furthermore, the addition of unlabelled acetate reduced the incorporation of label from [I-14C]acetate by 75% but from [2-14C]malonate by only 25%. These results suggest that malonate is an intermediate in aflatoxin synthesis and that is can be incorporated without prior conversion to acetate.  相似文献   

13.
Growth and aflatoxin production by toxigenic aspergilli are partially or completely inhibited by the undissociated form of acetic, benzoic, citric, lactic, propionic and sorbic acids. Salts such as sodium chloride, potassium chloride and sodium nitrate, at low concentrations, can enhance aflatoxin production. At higher concentrations they become inhibitory, but marked inhibition requires amounts of the salts greater than are commonly used in foods. Phenolic antioxidants, sometimes added to foods to prevent oxidative deterioration, also are inhibitory to toxigenic aspergilli. Other inhibitory agents include certain insecticides, methylxanthines (caffeine and theophyllin), and components of some herbs, spices and other plants.  相似文献   

14.
The formation of kanamyein is markedly inhibited by mercuric chloride, sodium iodoacetate, 2,4-dinitrophenol, sodium arsenite and sodium azide particularly when these are added at the start of fermentation. Less inhibition of kanamyein synthesis is observed in case of sodium 5,5-diethylbarbiturate, malonic acid, sodium arsenate and sodium fluoride. Inhibition of kanamycin synthesis is associated with growth inhibition in case of 2,4-dinitrophenol, sodium arsenite and sodium azide. Bacitracin and D-cycloserine have a stimulatory effect on kanamycin synthesis with slight inhibition of cellular growth. This stimulation might be due to accumulation of cell wall intermediates — aminosugar and sugar — which are shunted to the pathway of kanamycin synthesis. Penicillin lowers kanamycin synthesis by 65 percent as compared with 19 percent reduction of cellular growth. Chloramphenicol has a stimulatory effect at lower concentration (20 μg/ml), when it is added at 24 h of fermentation. At higher concentration (60 (μg/ml) chloramphenicol shows marked inhibition of both cellular growth and antibiotic biosynthesis.  相似文献   

15.
Rat brain contains substantial concentrations of free malonate (192 nmol/g wet weight) but origin and biological importance of the dicarboxylic acid are poorly understood. A dietary source has been excluded. A recently described malonyl-CoA decarboxylase deficiency is associated with malonic aciduria and clinical manifestations, including mental retardation. In an effort to study the metabolic origin of free malonate, several labeled acetyl-CoA precursors were administered by intracerebral injection. [2-14C]pyruvate or [1,5-14C]citrate produced radioactive glutamate but failed to label malonate. In contrast, [1-14C]acetate, [2-14C]acetate, and [1-14C]butyrate were converted to labeled glutamateand malonate after the same route of administration. The intracerebral injection of [1-14C]--alanine as a precursor of malonic semialdehyde and possibly free malonate did not give rise to radioactivity in the dicarboxylate. The labeling pattern of malonic acid is compatible with the reaction sequence: acetyl-CoAmalonyl-CoAmalonate. The final step is thought to occur by transfer of the CoA-group from malonyl-CoA to succinate and/or acetoacetate. Labeling of malonate from acetate is most effective at the age of 7 days when the net concentration of the dicarboxylic acid in rat brain is still very low. At this age, butyrate was a better precursor of malonate than acetate. It is proposed that fatty acid oxidation provides the acetyl-CoA which functions as the precursor of free brain malonate. Compartmentation of malonate biosynthesis is likely because the acetyl-CoA precursors citrate and pyruvate are ineffective.Presented before the 12th Biennial Meeting of the International Society for Neurochemistry, Algarve, Portugal, April 24, 1989.  相似文献   

16.
Aims:  Weak acids are widely used by the food industry to prevent spoilage and to inhibit the growth of pathogenic micro-organisms. In this study the inhibitory effects of three commonly used weak acids, acetic acid, benzoic acid and sorbic acid, on the growth of Listeria monocytogenes were investigated.
Methods and Results:  In a chemically defined medium at pH 6·4 benzoic acid had the greatest inhibitory effect (50% inhibition of growth at 4 mmol l−1), while acetate was the least inhibitory (50% inhibition of growth at 50 mmol l−1). Mutants lacking either sigmaB (Δ sigB ) or two of the glutamate decarboxylase systems (Δ gadAB ) were used to investigate the contribution these systems make to weak acid tolerance in L. monocytogenes .
Conclusions:  The stress-inducible sigma factor sigmaB (σB) was not required for protection against acetate and played only a minor role in tolerating benzoate and sorbate. The glutamate decarboxylase system, which plays an important role in tolerating inorganic acids, played no significant role in the ability of L. monocytogenes to tolerate these weak acids, and neither did the presence of glutamate in the growth medium.
Significance and Impact of the Study:  These results suggest that the effectiveness of weak acid preservatives in food will not be compromised by the presence of glutamate, at least under mildly acidic conditions.  相似文献   

17.
丙二酸是一种重要的有机二元羧酸,其应用价值遍及化工、医药、食品等领域。本文以大肠杆菌为底盘细胞,过表达了ppc、aspC、panD、pa0132、yneI和pyc基因,成功构建了丙二酸合成重组菌株大肠杆菌BL21(TPP)。该菌株在摇瓶发酵条件下,丙二酸产量达到0.61 g/L。在5 L发酵罐水平,采用间歇补料的方式丙二酸的积累量达3.32 g/L。本研究应用了融合蛋白技术,将ppc和aspC、pa0132和yneI分别进行融合表达,构建了工程菌BL21(SCR)。在摇瓶发酵水平,该菌株丙二酸的积累量达到了0.83 g/L,较出发菌株BL21(TPP)提高了36%。在5 L发酵罐中,工程菌BL21(SCR)的丙二酸产量最高达5.61 g/L,较出发菌株BL21(TPP)提高了69%。本研究实现了丙二酸在大肠杆菌中的生物合成,为构建丙二酸合成的细胞工厂提供了理论依据和技术基础,同时也对其他二元羧酸的生物合成具有启发和指导意义。  相似文献   

18.
A D Warth 《Applied microbiology》1991,57(12):3410-3414
The effects of benzoic acid in the preservative-resistant yeast Zygosaccharomyces bailii were studied. At concentrations of benzoic acid up to 4 mM, fermentation was stimulated and only low levels of benzoate were accumulated. Near the MIC (10 mM), fermentation was inhibited, ATP levels declined, and benzoate was accumulated to relatively higher levels. Intracellular pH was reduced but not greatly. Changes in the levels of metabolites at different external benzoic acid levels showed that glycolysis was limited at pyruvate kinase and glyceraldehyde dehydrogenase-phosphoglycerate kinase steps. Inhibition of phosphofructokinase and several other glycolytic enzymes was not responsible for the inhibition of fermentation. Instead, the results suggest that the primary action of benzoic acid in Z. bailii is to cause a general energy loss, i.e., ATP depletion.  相似文献   

19.
The effects of benzoic acid in the preservative-resistant yeast Zygosaccharomyces bailii were studied. At concentrations of benzoic acid up to 4 mM, fermentation was stimulated and only low levels of benzoate were accumulated. Near the MIC (10 mM), fermentation was inhibited, ATP levels declined, and benzoate was accumulated to relatively higher levels. Intracellular pH was reduced but not greatly. Changes in the levels of metabolites at different external benzoic acid levels showed that glycolysis was limited at pyruvate kinase and glyceraldehyde dehydrogenase-phosphoglycerate kinase steps. Inhibition of phosphofructokinase and several other glycolytic enzymes was not responsible for the inhibition of fermentation. Instead, the results suggest that the primary action of benzoic acid in Z. bailii is to cause a general energy loss, i.e., ATP depletion.  相似文献   

20.
The effects of potassium sorbate, sodium benzoate, sulphur dioxide and citric, malic and tartaric acids on growth and fumitremorgin production by a heat-resistant mould, Neosartorya fischeri , cultured on Czapek yeast autolysate agar (CYA) were studied over a 32-day incubation period. Colonies were examined, and extracts of agar and mycelia were analyzed for mycotoxin content using high performance liquid chromatography (HPLC). Growth of N. fischeri always resulted in production of the fumitremorgins verruculogen and fumitremorgin A and C. Growth on CYA (pH 3.5) was highly repressed by potassium sorbate and sodium benzoate; 75 mg/1 completely inhibited germination of ascospores. Sulphur dioxide was less inhibitory; growth occurred on CYA containing 100 but not 200 mg/1. Growth of N. fischeri was significantly reduced when the pH of CYA was reduced from 7.0 to 4.5 to 3.5 to 2.5. Citric, malic and tartaric acids promoted growth and fumitremorgin production when supplemented to CYA (pH 2.5). These observations indicate that growth and fumitremorgin production by N. fischeri are influenced by pH and type of acid present and can be controlled by small amounts of preservatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号