首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A (alpha-Gal A) gene located at Xq22.1. To determine the nature and frequency of the molecular lesions causing the classical and milder variant Fabry phenotypes and for precise carrier detection, the alpha-Gal A lesions in 42 unrelated Fabry hemizygotes were determined. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and their family members. The seven alpha-galactosidase A exons and flanking intronic sequences were PCR amplified and the nucleotide sequence was determined by solid-phase direct sequencing. RESULTS: Two patients with the mild cardiac phenotype had missense mutations, I9IT and F113L, respectively. In 38 classically affected patients, 33 new mutations were identified including 20 missense (MIT, A31V, H46R, Y86C, L89P, D92Y, C94Y, A97V, R100T, Y134S, G138R, A143T, S148R, G163V, D170V, C202Y, Y216D, N263S, W287C, and N298S), two nonsense (Q386X, W399X), one splice site mutation (IVS4 + 2T-->C), and eight small exonic insertions or deletions (304del1, 613del9, 777del1, 1057del2, 1074del2, 1077del1, 1212del3, and 1094ins1), which identified exon 7 as a region prone to gene rearrangements. In addition, two unique complex rearrangements consisting of contiguous small insertions and deletions were found in exons 1 and 2 causing L45R/H46S and L120X, respectively. CONCLUSIONS: These studies further define the heterogeneity of mutations causing Fabry disease, permit precise carrier identification and prenatal diagnosis in these families, and facilitate the identification of candidates for enzyme replacement therapy.  相似文献   

2.
3.
The aim of this work was to perform genetic analysis on 18 different blood-spot samples collected from neonates detected as hyperphenylalaninemic by Northeastern Italian screening program. DNA was extracted from blood-spots. Exons/introns of PAH gene were amplified by polymerase chain reaction (PCR), and PCR products were purified and sequenced with both forward and reverse primers. The most frequent mutations were IVS12nt1g>a (16.7%) and R408W, P281L and L48S (all together 11.1%). As expected, compound heterozygosity was the usual finding; homozygosity was found only in two patients with R158Q and IVS2nt5g>c mutations. The V230I mutation was reported for the first time in Italy. We found six previously described polymorphisms (V245V, IVS4nt47c>t, IVS2nt19t>c, IVS3nt-22c>t, IVS5nt-54a>g, and E280>Q280). To our knowledge, four genotypes were not previously described: R158Q/V230I present in one patient with classical PKU; and L48S/R408Q, A403V/IVS2nt-13t>g, and G272X/V230I present in patients showing HPA phenotype. Most of the mutations were located in the exons 12 and 7 and in exon/intron 2 (83.3% detection of total mutations in PKU or HPA patients of Northeastern Italy). From a practical viewpoint, the genetic analysis of blood-spots collected on Guthrie cards for neonatal screening for PKU could be a simple method to establish the genotype of neonates. Consequently, the genotype/phenotype correlation could lead to a more accurate diagnosis and prognosis for families.  相似文献   

4.
Mutation analysis of the Fanconi anemia gene FACC.   总被引:9,自引:2,他引:7       下载免费PDF全文
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. We have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. We identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A-->T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in our study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A-->T have Jewish ancestry and have a severe phenotype.  相似文献   

5.
Nonsense-mediated decay (NMD) is a eukaryotic cellular RNA surveillance and quality-control mechanism that degrades mRNA containing premature stop codons (nonsense mutations) that otherwise may exert a deleterious effect by the production of dysfunctional truncated proteins. Collagen X (COL10A1) nonsense mutations in Schmid-type metaphyseal chondrodysplasia are localized in a region toward the 3' end of the last exon (exon 3) and result in mRNA decay, in contrast to most other genes in which terminal-exon nonsense mutations are resistant to NMD. We introduce nonsense mutations into the mouse Col10a1 gene and express these in a hypertrophic-chondrocyte cell line to explore the mechanism of last-exon mRNA decay of Col10a1 and demonstrate that mRNA decay is spatially restricted to mutations occurring in a 3' region of the exon 3 coding sequence; this region corresponds to where human mutations have been described. This localization of mRNA-decay competency suggested that a downstream region, such as the 3' UTR, may play a role in specifying decay of mutant Col10a1 mRNA containing nonsense mutations. We found that deleting any of the three conserved sequence regions within the 3' UTR (region I, 23 bp; region II, 170 bp; and region III, 76 bp) prevented mutant mRNA decay, but a smaller 13 bp deletion within region III was permissive for decay. These data suggest that the 3' UTR participates in collagen X last-exon mRNA decay and that overall 3' UTR configuration, rather than specific linear-sequence motifs, may be important in specifying decay of Col10a1 mRNA containing nonsense mutations.  相似文献   

6.
7.
Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease caused by a deficiency of the enzyme involved in the last step of tyrosine degradation, fumarylacetoacetate hydrolase (FAH). Thus far, 34 mutations in the FAH gene have been reported in various HT1 patients. Site-directed mutagenesis of the FAH cDNA was used to investigate the effects of eight missense mutations found in HTI patients on the structure and activity of FAH. Mutated FAH proteins were expressed in Escherichia coli and in mammalian CV-1 cells. Mutations N16I, F62C, A134D, C193R, D233V, and W234G lead to enzymatically inactive FAH proteins. Two mutations (R341W, associated with the pseudo-deficiency phenotype, and Q279R) produced proteins with a level of activity comparable to the wild-type enzyme. The N16I, F62C, C193R, and W234G variants were enriched in an insoluble cellular fraction, suggesting that these amino acid substitutions interfere with the proper folding of the enzyme. Based on the tertiary structure of FAH, on circular dichroism data, and on solubility measurements, we propose that the studied missense mutations cause three types of structural effects on the enzyme: 1) gross structural perturbations, 2) limited conformational changes in the active site, and 3) conformational modifications with no significant effect on enzymatic activity.  相似文献   

8.
无义突变介导的mRNA降解(nonsense mediated mRNA decay, NMD)途径是真核生物体内一种重要的mRNA监督质控机制, 它降解含有由无义突变、错误剪接、移码突变等产生的提前终止翻译密码子(premature translation termination codon, PTC)的mRNA, 从而防止这种mRNA翻译产生的截短型蛋白质对机体造成的伤害. 研究发现, 一些含有PTC的mRNA发生了NMD途径逃逸, 但具体机制仍不清楚.本研究将成视网膜细胞瘤基因1 (retinoblastoma gene 1, RB1)作为NMD途径的靶基因, 构建mini-RB1基因,包括外显子1~14(cDNA)、内含子14 外显子15 内含子15和外显子16~27(cDNA) 的三部分序列, 将其构建到真核表达载体pcDNA 3.1(-)中.根据人类基因组突变数据库选择3个突变位点W99X、G310X和R467X, 构建相应无义突变体.分别将mini RB1基因野生型和无义突变体转入HeLa细胞进行表达.用qRT-PCR检测发现, W99X无义突变体与野生型相比mRNA的水平无显著差异.为了进一步证实mini- RB1(W99X)发生了NMD逃逸, 利用NMD途径抑制剂放线菌酮和转录抑制剂放线菌素D, 分别处理转入野生型的mini RB1基因及其无义突变体mini-RB1(W99X)的哺乳动物细胞, 发现mini-RB1基因无义突变体的mRNA水平与野生型无明显差异, 说明含有W99X无义突变的mini-RB1基因的mRNA发生了NMD逃逸.Western印迹检测mini-RB1基因的蛋白质表达发现, 在无义突变位点W99X下游重新起始了蛋白质的翻译, 因此,PTC下游蛋白质翻译的重新起始可能是导致无义mRNA逃逸NMD途径监控的主要原因.  相似文献   

9.
Inherited mutation of hypoxanthine guanine phosphoribosyltransferase, (HPRT) gives rise to Lesch-Nyhan syndrome or HPRT-related gout. We have identified a number of HPRT mutations in patients manifesting different clinical phenotypes, by analyzing all nine exons of the HPRT gene (HPRT1) from genomic DNA and reverse transcribed mRNA using the PCR technique coupled with direct sequencing. Recently, we detected two novel mutations: a single nucleotide substitution (430C > T) resulting in a nonsense mutation Q144X, and a deletion of HPRT1 exon 1 expressing no mRNA of HPRT. Furthermore, we summarized the spectrum of 56 Japanese HPRT mutations.  相似文献   

10.
In healthy individuals, fumarylacetoacetase (FAH) activities close to the range found in hereditary tyrosinemia type 1 (HT1) patients indicated the existence of a "pseudodeficiency" allele. In an individual homozygous for pseudodeficiency of FAH and in three HT1 families also carrying the pseudodeficiency allele, western blotting of fibroblast extracts showed that the pseudodeficiency allele gave very little immunoreactive FAH protein, whereas northern analysis revealed a normal amount of FAH mRNA. Sequencing revealed an identical mutation, C1021-->T (Arg341Trp), in all the pseudodeficiency alleles. Site-directed mutagenesis and expression in a rabbit reticulocyte lysate system demonstrated that the C1021-->T mutation gave reduced FAH activity and reduced amounts of the full-length protein. Bs1EI restriction digestion of PCR products distinguished between the normal and the mutated sequences. Among 516 healthy volunteers of Norwegian origin, the C1021-->T mutation was found in 2.2% of the alleles. Testing for the C1021-->T mutation may solve the problem of prenatal diagnosis and carrier detection in families with compound heterozygote genotypes for HT1 and pseudodeficiency.  相似文献   

11.
12.
13.
Two point mutations of ABCA1 gene were found in a patient with Tangier disease (TD): i) G>C in intron 2 (IVS2 +5G>C) and ii) c.844 C>T in exon 9 (R282X). The IVS2 +5G>C mutation was also found in the brother of another deceased TD patient, but not in 78 controls and 33 subjects with low HDL. The IVS2 +5G>C mutation disrupts ABCA1 pre-mRNA splicing in fibroblasts, leading to three abnormal mRNAs: devoid of exon 2 (Ex2-/mRNA), exon 4 (Ex4-/mRNA), or both these exons (Ex2-/Ex4-/mRNA), each containing a translation initiation site. These mRNAs are expected either not to be translated or generate short peptides. To investigate the in vitro effect of IVS2 +5G>C mutation, we constructed two ABCA1 minigenes encompassing Ex1-Ex3 region, one with wild-type (WTgene) and the other with mutant (MTgene) intron 2. These minigenes were transfected into COS1 and NIH3T3, two cell lines with a different ABCA1 gene expression. In COS1 cells, WTgene pre-mRNA was spliced correctly, while the splicing of MTgene pre-mRNA resulted in Ex2-/mRNA. In NIH3T3, no splicing of MTgene pre-mRNA was observed, whereas WTgene pre-mRNA was spliced correctly. These results stress the complexity of ABCA1 pre-mRNA splicing in the presence of splice site mutations.  相似文献   

14.
15.
The spectrum of phenylalanine hydroxylase (PAH) gene mutations was identified in patients with hyperphenylalaninemia(HPA) in Zhejiang, China. By using PCR amplification and DNA sequencing, 52 independent chromosomes were investigated. A total of 22 different mutations and polymorphisms have been detected, including three novel ones: IVS9nt+43G→T, IVS10nt+39G→ T, IVS10nt+97G→A. The most frequent mutations were R111X, IVS4nt?1G→A, F240S, all representing 5 (9.6%) of the 52 chromosomes and F240S were first reported in the Chinese populations. We also studied the correlations between genotype and phenotype that may enable us to predict the genotype-based biochemical phenotype in newborns with HPA.  相似文献   

16.
Inherited mutation of hypoxanthine guanine phosphoribosyltransferase, (HPRT) gives rise to Lesch-Nyhan syndrome or HPRT-related gout. We have identified a number of HPRT mutations in patients manifesting different clinical phenotypes, by analyzing all nine exons of the HPRT gene (HPRT1) from genomic DNA and reverse transcribed mRNA using the PCR technique coupled with direct sequencing. Recently, we detected two novel mutations: a single nucleotide substitution (430C > T) resulting in a nonsense mutation Q144X, and a deletion of HPRT1 exon 1 expressing no mRNA of HPRT. Furthermore, we summarized the spectrum of 56 Japanese HPRT mutations.  相似文献   

17.
Lysinuric protein intolerance (LPI) is a rare autosomal recessive defect of cationic amino acid transport caused by mutations in the SLC7A7 gene. We report the genomic structure of the gene and the results of the mutational analysis in Italian, Tunisian, and Japanese patients. The SLC7A7 gene consists of 10 exons; sequences of all of the exon-intron boundaries are reported here. All of the mutant alleles were characterized and eight novel mutations were detected, including two missense mutations, 242A-->C (M1L) and 1399C-->A (S386R); a nonsense mutation 967G-->A (W242X); two splice mutations IVS3 +1G-->A and IVS6 +1G-->T; a single-base insertion, 786insT; and two 4-bp deletions, 455delCTCT and 1425delTTCT. In addition, a previously reported mutation, 1625insATCA, was found in one patient. It is noteworthy that 242A-->C causes the change of Met1 to Leu, a rare mutational event previously found in a few inherited conditions. We failed to establish a genotype/phenotype correlation. In fact, both intrafamilial and interfamilial phenotypic variability were observed in homozygotes for the same mutation. The DNA-based tests are now easily accessible for molecular diagnosis, genetic counseling, and prenatal diagnosis of LPI.  相似文献   

18.
Ellis–van Creveld syndrome (EvC) is a rare autosomal recessive skeletal dysplasia characterized by short limbs, short ribs, postaxial polydactyly, and dysplastic nails and teeth. It is caused by biallelic mutations in the EVC or EVC2 gene. Here, we identified a novel nonsense mutation p.W828X (c.2484G>A) in exon 14 and a recurrent nonsense mutation p. R399X (c.1195C>T) in exon 10 of EVC2 gene in a Chinese boy with EvC. Identification of a novel genotype in EvC will provide clues to the phenotype–genotype relations and may assist not only in the clinical diagnosis of EvC but also in the interpretation of genetic information used for prenatal diagnosis and genetic counseling.  相似文献   

19.
The translation of human triosephosphate isomerase (TPI) mRNA normally terminates at codon 249 within exon 7, the final exon. Frameshift and nonsense mutations of the type that cause translation to terminate prematurely at or upstream of codon 189 within exon 6 reduce the level of nuclear TPI mRNA to 20 to 30% of normal by a mechanism that is not a function of the distance of the nonsense codon from either the translation initiation or termination codon. In contrast, frameshift and nonsense mutations of another type that cause translation to terminate prematurely at or downstream of codon 208, also within exon 6, have no effect on the level of nuclear TPI mRNA. In this work, quantitations of RNA that derived from TPI alleles in which nonsense codons had been generated between codons 189 and 208 revealed that the boundary between the two types of nonsense codons resides between codons 192 and 195. The analysis of TPI gene insertions and deletions indicated that the positional feature differentiating the two types of nonsense codons is the distance of the nonsense codon upstream of intron 6. For example, the movement of intron 6 to a position downstream of its normal location resulted in a concomitant downstream movement of the boundary between the two types of nonsense codons. The analysis of intron 6 mutations indicated that the intron 6 effect is stipulated by the 88 nucleotides residing between the 5' and 3' splice sites. Since the deletion of intron 6 resulted in only partial abrogation of the nonsense codon-mediated reduction in the level of TPI mRNA, other sequences within TPI pre-mRNA must function in the effect. One of these sequences may be intron 2, since the deletion of intron 2 also resulted in partial abrogation of the effect. In experiments that switched introns 2 and 6, the replacement of intron 6 with intron 2 was of no consequence to the effect of a nonsense codon within either exon 1 or exon 6. In contrast, the replacement of intron 2 with intron 6 was inconsequential to the effect of a nonsense codon in exon 6 but resulted in partial abrogation of a nonsense codon in exon 1.  相似文献   

20.
Sanfilippo syndrome type B (mucopolysaccharidosis IIIB) is a rare autosomal recessive disorder characterized by the inability to degrade heparan sulfate because of a deficiency of the lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). We performed mutation screening in a group of 20 patients, identyifing 28 mutations, 14 of which were novel (L35F, 204delC, 221insGCGCG, G82D, W156C, 507delC, IVS3+1G-->A, E336X, V501G, R520W, S534Y, W649C, 1953insGCCA, 2185delAGA). Four of these mutations were found in homozygosity and only one was seen in two different patients, showing the remarkable molecular heterogeneity of the disease. Mutation IVS3+1G-->A produces aberrant RNA splicing: it represents a base substitution from G to A of the invariant GT dinucleotides at the splicing donor site of intron 3 resulting in the skipping of exon 3 and both exons 2 and 3. Transient transfection of COS cells, by DNA mutagenized with NAGLU mutations, produced enzymatic molecules without activity, demonstrating the deleterious nature of the defects. Metabolic labeling of transfected mutants suggested a normal synthesis of the involved polypeptide for missense alterations, whereas increased protein or mRNA instability was shown for nonsense and most of the frameshift mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号