首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Voltage-gated sodium channels are the primary target of pyrethroid insecticides. Numerous point mutations in sodium channel genes have been identified in pyrethroid-resistant insect species, and many have been confirmed to reduce or abolish sensitivity of channels expressed in Xenopus oocytes to pyrethroids. Recently, several novel mutations were reported in sodium channel genes of pyrethroid-resistant Aedes mosquito populations. One of the mutations is a phenylalanine (F) to cysteine (C) change in segment 6 of domain III (IIIS6) of the Aedes mosquito sodium channel. Curiously, a previous study showed that alanine substitution of this F did not alter the action of deltamethrin, a type II pyrethroid, on a cockroach sodium channel. In this study, we changed this F to C in a pyrethroid-sensitive cockroach sodium channel and examined mutant channel sensitivity to permethrin as well as five other type I or type II pyrethroids in Xenopus oocytes. Interestingly, the F to C mutation drastically reduced channel sensitivity to three type I pyrethroids, permethrin, NRDC 157 (a deltamethrin analogue lacking the ??-cyano group) and bioresemthrin, but not to three type II pyrethroids, cypermethrin, deltamethrin and cyhalothrin. These results confirm the involvement of the F to C mutation in permethrin resistance, and raise the possibility that rotation of type I and type II pyrethroids might be considered in the control of insect pest populations where this particular mutation is present.  相似文献   

2.
Nations throughout the Indo‐Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target‐site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo‐Pacific region are described and their geographical distributions investigated using genome‐wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed‐models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome‐wide variation. Mixed‐models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome‐wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo‐Pacific region, pointing to undocumented mosquito invasions between countries.  相似文献   

3.
Pyrethroid resistance is envisioned to be a major problem for the vector control program since, at present, there are no suitable chemical substitutes for pyrethroids. Cross-resistance to knockdown agents, which are mainly used in mosquito coils and related products as spatial repellents, is the most serious concern. Since cross-resistance is a global phenomenon, we have started to monitor the distribution of mosquito resistance to pyrethroids. The first pilot study was carried out in Vietnam. We periodically drove along the national road from the north end to the Mekong Delta in Vietnam and collected mosquito larvae from used tires. Simplified susceptibility tests were performed using the fourth instar larvae of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Compared with the other species, Ae. aegypti demonstrated the most prominent reduction in susceptibility. For Ae. aegypti, significant increases in the susceptibility indices with a decrease in the latitude of collection points were observed, indicating that the susceptibility of Ae. aegypti against d-allethrin was lower in the southern part, including mountainous areas, as compared to that in the northern part of Vietnam. There was a significant correlation between the susceptibility indices in Ae. aegypti and the sum of annual pyrethroid use for malaria control (1998–2002). This might explain that the use of pyrethroids as residual treatment inside houses and pyrethroid-impregnated bed nets for malaria control is attributable to low pyrethroid susceptibility in Ae. aegypti. Such insecticide treatment appeared to have been intensively administered in the interior and along the periphery of human habitation areas where, incidentally, the breeding and resting sites of Ae. aegypti are located. This might account for the strong selection pressure toward Ae. aegypti and not Ae. albopictus.  相似文献   

4.
Aedes aegypti is a primary vector of viral pathogens and is responsible for millions of human infections annually that represent critical public health and economic costs. Pyrethroids are one of the most commonly used classes of insecticides to control adult A. aegypti. The insecticidal activity of pyrethroids depends on their ability to bind and disrupt the voltage-sensitive sodium channel (VSSC). In mosquitoes, a common mechanism of resistance to pyrethroids is due to mutations in Vssc (hereafter referred as knockdown resistance, kdr). In this study, we found that a kdr (410L+V1016I+1534C) allele was the main mechanism of resistance in a pyrethroid-resistant strain of A. aegypti collected in Colombia. To characterize the level of resistance these mutations confer, we isolated a pyrethroid resistant strain (LMRKDR:RK, LKR) that was congenic to the susceptible Rockefeller (ROCK) strain. The full-length cDNA of Vssc was cloned from LKR and no additional resistance mutations were present. The levels of resistance to different pyrethroids varied from 3.9- to 56-fold. We compared the levels of resistance to pyrethroids, DCJW and DDT between LKR and what was previously reported in two other congenic strains that share the same pyrethroid-susceptible background (the ROCK strain), but carry different kdr alleles (F1534C or S989P + V1016G). The resistance conferred by kdr alleles can vary depending on the stereochemistry of the pyrethroid. The 410L+1016I+1534C kdr allele does not confer higher levels of resistance to six of ten pyrethroids, relative to the 1534C allele. The importance of these results to understand the evolution of insecticide resistance and mosquito control are discussed.  相似文献   

5.
IntroductionIn Colombia, organochloride, organophosphate, carbamate, and pyrethroid insecticides are broadly used to control Aedes aegypti populations. However, Colombian mosquito populations have shown variability in their susceptibility profiles to these insecticides, with some expressing high resistance levels.Materials and methodsIn this study, we analyzed the susceptibility status of ten Colombian field populations of Ae. aegypti to two pyrethroids; permethrin (type-I pyrethroid) and lambda-cyhalothrin (type-II pyrethroid). In addition, we evaluated if mosquitoes pressured with increasing lambda-cyhalothrin concentrations during some filial generations exhibited altered allelic frequency of these kdr mutations and the activity levels of some metabolic enzymes.ResultsMosquitoes from all field populations showed resistance to lambda-cyhalothrin and permethrin. We found that resistance profiles could only be partially explained by kdr mutations and altered enzymatic activities such as esterases and mixed-function oxidases, indicating that other yet unknown mechanisms could be involved. The molecular and biochemical analyses of the most pyrethroid-resistant mosquito population (Acacías) indicated that kdr mutations and altered metabolic enzyme activity are involved in the resistance phenotype expression.ConclusionsIn this context, we propose genetic surveillance of the mosquito populations to monitor the emergence of resistance as an excellent initiative to improve mosquito-borne disease control measures.  相似文献   

6.
Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site—the voltage-gated sodium channel (VGSC)—and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.  相似文献   

7.

Background

Resistance of Aedes aegypti to photostable pyrethroid insecticides is a major problem for disease-vector control programs. Pyrethroids target the voltage-gated sodium channel on the insects'' neurons. Single amino acid substitutions in this channel associated with pyrethroid resistance are one of the main factors that cause knockdown resistance in insects. Although kdr has been observed in several mosquito species, point mutations in the para gene have not been fully characterized in Ae. aegypti populations in Vietnam. The aim of this study was to determine the types and frequencies of mutations in the para gene in Ae. aegypti collected from used tires in Vietnam.

Methods and Findings

Several point mutations were examined that cause insensitivity of the voltage-gated sodium channel in the insect nervous system due to the replacement of the amino acids L1014F, the most commonly found point mutation in several mosquitoes; I1011M (or V) and V1016G (or I), which have been reported to be associated to knockdown resistance in Ae. aegypti located in segment 6, domain II; and a recently found amino acid replacement in F1269 in Ae. aegypti, located in segment 6, domain III. Among 756 larvae from 70 locations, no I1011M or I1011V nor L1014F mutations were found, and only two heterozygous V1016G mosquitoes were detected. However, F1269C mutations on domain III were distributed widely and with high frequency in 269 individuals among 757 larvae (53 collection sites among 70 locations surveyed). F1269C frequencies were low in the middle to north part of Vietnam but were high in the areas neighboring big cities and in the south of Vietnam, with the exception of the southern mountainous areas located at an elevation of 500–1000 m.

Conclusions

The overall percentage of homozygous F1269C seems to remain low (7.4%) in the present situation. However, extensive and uncontrolled frequent use of photostable pyrethroids might be a strong selection pressure for this mutation to cause serious problems in the control of dengue fever in Vietnam.  相似文献   

8.
The L1014F mutation in the voltage‐sodium channel gene has been associated with resistance to DDT and pyrethroids in various arthropod species including mosquitoes. We determined the frequency of the L1014F kdr mutation in 16 field populations of Culex quinquefasciatus from Northeastern Mexico collected between 2008 and 2013. The L1014F was present in all populations analyzed with the lowest frequency (3.33%) corresponding to the population from Monclova collected in 2012, and the highest frequency (63.63%) from the Monterrey population collected in 2012. The presence of a kdr mutation in populations of Cx. quinquefasciatus from northeastern Mexico provides evidence of pyrethroid resistance. This requires a special attention, considering that pyrethroid‐based insecticides are commonly used in vector‐control campaigns, especially against Aedes aegypti (L.).  相似文献   

9.

Background

Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH) has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism.

Methodology/Principal Findings

Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald), to phenoxybenzoic acid (PBacid).

Conclusions/Significance

ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.  相似文献   

10.
Aedes aegypti (L.) is an important mosquito vector of emerging arboviruses such as Zika, dengue, yellow fever, and chikungunya. To quell potential disease outbreaks, its populations are controlled by applying pyrethroid insecticides, which selection pressure may lead to the development of insecticide resistance. Target site insensitivity to pyrethroids caused by non-synonymous knockdown resistance (kdr) mutations in the voltage-gated sodium (NaV) channel is a predominant mechanism of resistance in mosquitoes. To evaluate the potential impact of pyrethroid resistance on vector control, Ae. aegypti eggs were collected from eight mosquito control operational areas in Harris County, Texas, and emerged females were treated in field tests at four different distances from the pyrethroid Permanone 31–66 source. The females were genotyped by melting curve analyses to detect two kdr mutations (V1016I and F1534C) in the NaV channel. Harris County females had higher survivorship rates at each distance than the pyrethroid-susceptible Orlando strain females. Survivorship increased with distance from the pyrethroid source, with 39% of field-collected mosquitoes surviving at 7.62 m and 82.3% at 22.86 m from the treatment source. Both the V1016I and F1534C pyrethroid resistant genotypes were widely distributed and at high frequency, with 77% of the females being double homozygous resistant (II/CC), this being the first report of kdr mutations in Ae. aegypti in Harris County. Analysis of the probability of survival for each mutation site independently indicated that the CC genotype had similar probability of survival as the FC heterozygous, while the II genotype had higher survival than both the VI and VV, that did not differ. The double homozygous resistant genotype (II/CC) had the highest probability of survival. A linear model estimated probability of survival for areas and genotypes. The high frequency and widespread distribution of double-homozygote pyrethroid-resistant Ae. aegypti may jeopardize disease vector control efforts in Harris County.  相似文献   

11.
Thirty‐two Aedes aegypti populations collected throughout Thailand and five populations of Aedes albopictus from southern Thailand were subjected to standard WHO contact bioassays to assess susceptibility to three commonly used synthetic pyrethroids: permethrin, deltamethrin, and lambda‐cyhalothrin. A wide degree of physiological response to permethrin was detected in Ae. aegypti, ranging from 56.5% survival (Lampang, northern Thailand) to only 4% (Kalasin in northeastern and Phuket in southern Thailand). All 32 populations of Ae. aegypti were found to have evidence of incipient resistance (62.5%) or levels of survival deemed resistant (37.5%) to permethrin. Four populations of Ae. albopictus were found with incipient resistance (97 – 80% mortality) and one with resistance (< 80%) to permethrin. The majority of Ae. aegypti populations (68.7%) was susceptible (> 98% mortality) to deltamethrin, with incipient resistance (observed 97–82% mortality) in other localities. In contrast, all populations of Ae. aegypti were completely susceptible (100% mortality) to the recommended operational dosage of lambda‐cyhalothrin. All five populations of Ae. albopictus were found completely susceptible to both deltamethrin and lambda‐cyhalothrin. Evidence of defined incipient or resistance to synthetic pyrethroids mandates appropriate response and countermeasures to mitigate further development and spread of resistance. In light of these findings, we conclude that routine and comprehensive susceptibility monitoring of dengue mosquito vectors to synthetic pyrethroids should be a required component of resistance management policies and disease control activities.  相似文献   

12.

Background

Dengue fever is reemerging on the island of Martinique and is a serious threat for the human population. During dengue epidemics, adult Aedes aegypti control with pyrethroid space sprays is implemented in order to rapidly reduce transmission. Unfortunately, vector control programs are facing operational challenges with the emergence of pyrethroid resistant Ae. aegypti populations.

Methodology/Principal Findings

To assess the impact of pyrethroid resistance on the efficacy of treatments, applications of deltamethrin and natural pyrethrins were performed with vehicle-mounted thermal foggers in 9 localities of Martinique, where Ae. aegypti populations are strongly resistant to pyrethroids. Efficacy was assessed by monitoring mortality rates of naturally resistant and laboratory susceptible mosquitoes placed in sentinel cages. Before, during and after spraying, larval and adult densities were estimated. Results showed high mortality rates of susceptible sentinel mosquitoes treated with deltamethrin while resistant mosquitoes exhibited very low mortality. There was no reduction of either larval or adult Ae. aegypti population densities after treatments.

Conclusions/Significance

This is the first documented evidence that pyrethroid resistance impedes dengue vector control using pyrethroid-based treatments. These results emphasize the need for alternative tools and strategies for dengue control programs.  相似文献   

13.
In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR95 ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR95 > 10), which is consistent with the use of intense chemical control. In Crato, RR95 values were > 50 for both compounds. Knock‐down‐resistant (kdr) mutants in the voltage‐gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione‐S‐transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR95, increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed.  相似文献   

14.
Aedes albopictus (Skuse) is an invasive mosquito that has become an important vector of chikungunya and dengue viruses. Immature Ae. albopictus thrive in backyard household containers that require treatment with larvicides and when adult populations reach pest levels or disease transmission is ongoing, adulticiding is often required. To assess the feasibility of control of USA populations, we tested the susceptibility of Ae. albopictus to chemicals representing the main insecticide classes with different modes of action: organochlorines, organophosphates, carbamates, pyrethroids, insect growth regulators (IGR), naturalytes, and biolarvicides. We characterized a susceptible reference strain of Ae. albopictus, ATM95, and tested the susceptibility of eight USA populations to five adulticides and six larvicides. We found that USA populations are broadly susceptible to currently available larvicides and adulticides. Unexpectedly, however, we found significant resistance to dichlorodiphenyltrichloroethane (DDT) in two Florida populations and in a New Jersey population. We also found resistance to malathion, an organophosphate, in Florida and New Jersey and reduced susceptibility to the IGRs pyriproxyfen and methoprene. All populations tested were fully susceptible to pyrethroids. Biochemical assays revealed a significant up-regulation of GSTs in DDT-resistant populations in both larval and adult stages. Also, β-esterases were up-regulated in the populations with suspected resistance to malathion. Of note, we identified a previously unknown amino acid polymorphism (Phe → Leu) in domain III of the VGSC, in a location known to be associated with pyrethroid resistance in another container-inhabiting mosquito, Aedes aegypti L. The observed DDT resistance in populations from Florida may indicate multiple introductions of this species into the USA, possibly from tropical populations. In addition, the mechanisms underlying DDT resistance often result in pyrethroid resistance, which would undermine a remaining tool for the control of Ae. albopictus. Continued monitoring of the insecticide resistance status of this species is imperative.  相似文献   

15.
The voltage-sensitive sodium (Na+) channel (Vssc) is the target site of pyrethroid insecticides. Pest insects develop resistance to this class of insecticide by acquisition of one or multiple amino acid substitution(s) in this channel. In Southeast Asia, two major Vssc types confer pyrethroid resistance in the dengue mosquito vector Aedes aegypti, namely, S989P+V1016G and F1534C. We expressed several types of Vssc in Xenopus oocytes and examined the effect of amino acid substitutions in Vssc on pyrethroid susceptibilities. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to permethrin by 100- and 25-fold, respectively, while S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to permethrin by 1100-fold. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to deltamethrin by 10- and 1-fold (no reduction), respectively, but S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to deltamethrin by 90-fold. These results imply that pyrethroid insecticides are highly likely to lose their effectiveness against A. aegypti if such a Vssc haplotype emerges as the result of a single crossing-over event; thus, this may cause failure to control this key mosquito vector. Here, we strongly emphasize the importance of monitoring the occurrence of triple mutations in Vssc in the field population of A. aegypti.  相似文献   

16.
Current methods of broad area application of contact insecticides used in mosquito control are becoming less effective, primarily due to resistance within mosquito populations. New methods that can deliver ingestible insecticides are being investigated as a means to mitigate resistance. This study evaluated insecticide delivery through toxic sugar baits (TSB) and resulting mortality of susceptible and resistant strains of Aedes aegypti. Two Ae. aegypti strains were evaluated using a 1% boric acid TSB: the susceptible Orlando 1952 (ORL) strain and the resistant Puerto Rican (PR) strain. The TSB resulted in high mortality for both ORL and PR strain of Ae. aegypti. Average mortality of female mosquitoes given TSB was 90.8% for PR and 99.3% for ORL. Our study suggests that targeting resistant mosquitoes with ingestible insecticides through TSBs could be a viable alternative to current mosquito control strategies and should be considered when developing an integrated vector management program.  相似文献   

17.
The para-type sodium channel in insects is the primary target of pyrethroid and DDT insecticides. However, modifications in the target protein structure such as point mutations or substitutions, resulting from single nucleotide polymorphisms (SNP), cause insensitivity of the insect’s nervous system to pyrethroids and DDT and, in turn, result in insecticide resistance. Among these mutations, substitution of leucine to phenylalanine (L to F) in the 6th segment of domain II (IIS6) has been clearly associated with pyrethroid and DDT resistance in many insect species, including mosquitoes. Here, multiple copies of the sodium channel gene were identified in the mosquito Culex quinquefasciatus by Southern blot analysis and polymerase chain reaction (PCR) analysis. Two genomic DNA fragments of the mosquito sodium channel gene (509 and 181 bp) were detected by a single PCR primer pair. Sequence analysis indicated the lack of an intron sequence in the 181 bp sodium channel fragment. Single nucleotide polymorphism (SNP) analysis revealed a strong correlation among the frequencies of L-to-F allelic (T) expression at the RNA level, the frequencies and resistance allele (T) at the L-to-F site of the 509 bp genomic DNA fragment, which did include an intron sequence, and the levels of insecticide resistance. Taking together, this study, for the first time, not only revealed multiple copies of the sodium channel gene presented in the Culex mosquito genome but also suggested that the one with the intro sequence may be a functional copy of the sodium channel gene in the Culex mosquitoes.  相似文献   

18.
The gene para in Drosophila melanogaster encodes an α subunit of voltage-activated sodium channels, the presumed site of action of DDT and pyrethroid insecticides. We used an existing collection of Drosophila para mutants to examine the molecular basis of target-site resistance to pyrethroids and DDT. Six out of thirteen mutants tested were associated with a largely dominant, 10- to 30-fold increase in DDT resistance. The amino acid lesions associated with these alleles defined four sites in the sodium channel polypeptide where a mutational change can cause resistance: within the intracellular loop between S4 and S5 in homology domains I and III, within the pore region of homology domain III, and within S6 in homology domain III. Some of these sites are analogous with those defined by knockdown resistance (kdr) and super-kdr resistance-associated mutations in houseflies and other insects, but are located in different homologous units of the channel polypeptide. We find a striking synergism in resistance levels with particular heterozygous combinations of para alleles that appears to mimic the super-kdr double mutant housefly phenotype. Our results indicate that the alleles analyzed from natural populations represent only a subset of mutations that can confer resistance. The implications for the binding site of pyrethroids and mechanisms of target-site insensitivity are discussed. Received: 9 May 1997 / Accepted: 21 July 1997  相似文献   

19.

Background

Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance.

Methodology/Principal Findings

We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534.

Conclusion /significance

This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence.  相似文献   

20.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of citrus. It is the vector of ‘Candidatus’ Liberibacter asiaticus, a phloem‐limited bacterium that infects citrus, resulting in the disease Huanglongbing (HLB). Disease management relies heavily on suppression of D. citri populations with insecticides, including pyrethroids. In recent annual surveys to monitor insecticide resistance, reduced susceptibility to fenpropathrin was identified in several field populations of D. citri. The primary target of pyrethroids is the voltage‐gated sodium channel (VGSC). The VGSC is prone to target‐site insensitivity because of mutations that either reduce pyrethroid binding and/or alter gating kinetics. These mutations, known as knockdown resistance or kdr, have been reported in a wide diversity of arthropod species. Alternative splicing, in combination with kdr mutations, has been also associated with reduced pyrethroid efficacy. Here we report the molecular characterization of the VGSC in D. citri along with a survey of alternative splicing across developmental stages of this species. Previous studies demonstrated that D. citri has an exquisite enzymatic arsenal to detoxify insecticides resulting in reduced efficacy. The results from the current investigation demonstrate that target‐site insensitivity is also a potential basis for insecticide resistance to pyrethroids in D. citri. The VGSC sequence and its molecular characterization should facilitate early elucidation of the underlying cause of an established case of resistance to pyrethroids. This is the first characterization of a VGSC from a hemipteran to this level of detail, with the majority of the previous studies on dipterans and lepidopterans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号