首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.  相似文献   

2.
3.
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation and abnormal inflammatory response. Wnt/β‐catenin and AMP‐activated protein kinase (AMPK) have been shown to modulate lung inflammatory responses and injury. However, it remains elusive whether Wnt/β‐catenin and AMPK modulate nuclear factor erythroid‐2 related factor‐2 (Nrf2)‐mediated protective responses during the development of emphysema. Here we showed that treatment with a Wnt pathway activator (LiCl) reduced elastase‐induced airspace enlargement and cigarette smoke extract (CSE)‐induced lung inflammatory responses in WT mice, which was associated with increased activation of Nrf2 pathway. Interestingly, these effects of LiCl were not observed in Nrf2?/? mice exposed to elastase. In normal human bronchial epithelial (NHBE) cells, Wnt3a overexpression up‐regulated, whereas Wnt3a knockdown further down‐regulated the levels of Nrf2 and its target proteins heme oxygenase‐1 (HO‐1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) by CSE treatment. In contrast, Nrf2 deficiency did not have any effects on Wnt/β‐catenin pathway in mouse lungs and NHBE cells. Both elastase and CSE exposures reduced AMPK phosphorylation. A specific AMPK activator metformin increased Wnt3a, β‐catenin, Nrf2 phosphorylation and activation but reduced the levels of IL‐6 and IL‐8 in NHBE cells and mouse lungs exposed to CSE. Furthermore, Nrf2 deficiency abolished the protection of metformin against CSE‐induced increase in IL‐6 and IL‐8 in NHBE cells. In conclusion, Nrf2 mediates the protective effects of both Wnt3a/β‐catenin and AMPK on lung inflammatory responses during the development of COPD/emphysema. These findings provide potential therapeutic targets for the intervention of COPD/emphysema.  相似文献   

4.
5.
Intramuscular fat (IMF) is an important trait that influences beef quality. In two studies, we examined the possible involvement of the Wnt/β‐catenin signaling pathway in IMF deposition in Korean cattle. In study 1, using a group of bulls and steers, we found that castration, a non‐genetic factor, decreased (< 0.01) the expression of both the WNT10B and CTNNB1 genes, whereas it increased the expression of the Wnt antagonist secreted frizzled‐related proteins 4 (SFRP4,< 0.001) and the adipogenic CCAAT/enhancer binding protein (C/EPB), alpha (CEBPA,< 0.001) and peroxisome proliferator‐activated receptor gamma (PPARG,< 0.05) genes in longissimus dorsi muscle (LM) tissue. The WNT10B and CTNNB1 mRNA levels showed strong (< 0.001) negative correlations (r = ?0.68 and = ?0.73 respectively) with the IMF content, whereas the SFRP4, CEBPA and PPARG mRNA levels showed strong (< 0.01) positive correlations (r = 0.70, 0.70 and 0.64 respectively) with the IMF content. Large variation still exists in the IMF content of steers, implying that genetic factors affect IMF deposition. Using a different group of steers, a correlation analysis in study 2 also showed that the expression of the WNT10B and CTNNB1 genes, and SFRP4 and adipogenic genes was negatively and positively associated with the IMF content respectively. Our findings suggest that downregulation of the Wnt/β‐catenin signaling pathway genes, but upregulation of Wnt antagonist SFRP4 and adipogenic gene expression following castration, contributes to increased IMF deposition in the LM. Our results demonstrate that both non‐genetic factors (castration) and genetic variation within the steer group affect the gene expression pattern of the Wnt/β‐catenin signaling pathway.  相似文献   

6.
7.
The canonical Wnt/β‐catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co‐receptor for Wnt/β‐catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3β‐mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane‐anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6‐ICD) can activate the Wnt/β‐catenin pathway in a β‐catenin and TCF/LEF‐1 dependent manner, as well as interact with and attenuate GSK3β activity. However, it is unknown if the ability of LRP6‐ICD to attenuate GSK3β activity and modulate activation of the Wnt/β‐catenin pathway requires phosphorylation of the LRP6‐ICD PPP(S/T)P motifs, in a manner similar to the membrane‐anchored LRP6 intracellular domain. Here we provide evidence that the LRP6‐ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3β to stabilize endogenous cytosolic β‐catenin resulting in activation of TCF/LEF‐1 and the Wnt/β‐catenin pathway. LRP6‐ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3β activity in vitro, and both constructs inhibited the in situ GSK3β‐mediated phosphorylation of β‐catenin and tau to the same extent. These data indicate that the LRP6‐ICD attenuates GSK3β activity similar to other GSK3β binding proteins, and is not a result of it being a GSK3β substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6‐ICD may be distinct from membrane‐anchored LRP6, and that release of the LRP6‐ICD may provide a complimentary signaling cascade capable of modulating Wnt‐dependent gene expression. J. Cell. Biochem. 108: 886–895, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
Canonical Wnt/β‐catenin signaling has been implicated in multiple developmental events including the regulation of proliferation, cell fate, and differentiation. In the inner ear, Wnt/β‐catenin signaling is required from the earliest stages of otic placode specification through the formation of the mature cochlea. Within the avian inner ear, the basilar papilla (BP), many Wnt pathway components are expressed throughout development. Here, using reporter constructs for Wnt/β‐catenin signaling, we show that this pathway is active throughout the BP (E6‐E14) in both hair cells (HCs) and supporting cells. To characterize the role of Wnt/β‐catenin activity in developing HCs, we performed gain‐ and loss‐of‐function experiments in vitro and in vivo in the chick BP and zebrafish lateral line systems, respectively. Pharmacological inhibition of Wnt signaling in the BP and lateral line neuromasts during the periods of proliferation and HC differentiation resulted in reduced proliferation and decreased HC formation. Conversely, pharmacological activation of this pathway significantly increased the number of HCs in the lateral line and BP. Results demonstrated that this increase was the result of up‐regulated cell proliferation within the Sox2‐positive cells of the prosensory domains. Furthermore, Wnt/β‐catenin activation resulted in enhanced HC regeneration in the zebrafish lateral line following aminoglycoside‐induced HC loss. Combined, our data suggest that Wnt/β‐catenin signaling specifies the number of cells within the prosensory domain and subsequently the number of HCs. This ability to induce proliferation suggests that the modulation of Wnt/β‐catenin signaling could play an important role in therapeutic HC regeneration. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 438–456, 2014  相似文献   

10.
11.
BACKGROUND: The etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P) is very complex and still not well elucidated. Given the critical role of DNA damage repair in the embryonic development, we decided to test the hypothesis that polymorphisms of selected DNA repair genes might contribute to the risk of NSCL/P in the Polish population. METHODS: Analysis of 36 polymorphisms in 12 DNA damage repair genes (ATM, BLM, BRCA1, BRIP1, E2F1, MLH1, MRE11A, MSH2, MSH6, NBN, RAD50, and RAD51) was conducted using TaqMan assays in a group of 263 NSCL/P patients and matched control group (n = 526). RESULTS: Statistical analysis of genotyping results revealed that nucleotide variants in the BRIP1 (BACH1) gene were associated with the risk of NSCL/P. Under assumption of a dominant model, the calculated odds ratios (ORs) for BRIP1 rs8075370 and rs9897121 were 1.689 (95% confidence interval [CI], 1.249–2.282; p = 0.0006) and 1.621 (95% CI, 1.200–2.191; p = 0.0016), respectively. These results were statistically significant even after applying multiple testing correction. Additional evidence for a causative role of BRIP1 in NSCL/P etiology was provided by haplotype analysis. Borderline association with a decreased risk of this anomaly was also observed for BLM rs401549 (ORrecessive = 0.406; 95% CI, 0.223–1.739; p = 0.002) and E2F1 rs2071054 (ORdominant = 0.632; 95% CI, 0.469–0.852; p = 0.003). CONCLUSION: Our study suggests that polymorphic variants of DNA damage repair genes play a role in the susceptibility to NSCL/P. BRIP1 might be novel candidate gene for this common developmental anomaly. Birth Defects Research (Part A), 100:670–678, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
13.
Wnt/β‐catenin signals are important regulators of embryonic and adult stem cell self‐renewal and differentiation and play causative roles in tumorigenesis. Purified recombinant Wnt3a protein, or Wnt3a‐conditioned culture medium, has been widely used to study canonical Wnt signaling in vitro or ex vivo. To study the role of Wnt3a in embryogenesis and cancer models, we developed a Cre recombinase activatable Rosa26Wnt3a allele, in which a Wnt3a cDNA was inserted into the Rosa26 locus to allow for conditional, spatiotemporally defined expression of Wnt3a ligand for gain‐of‐function (GOF) studies in mice. To validate this reagent, we ectopically overexpressed Wnt3a in early embryonic progenitors using the T‐Cre transgene. This resulted in up‐regulated expression of a β‐catenin/Tcf‐Lef reporter and of the universal Wnt/β‐catenin pathway target genes, Axin2 and Sp5. Importantly, T‐Cre; Rosa26Wnt3a mutants have expanded presomitic mesoderm (PSM) and compromised somitogenesis and closely resemble previously studied T‐Cre; Ctnnb1ex3 (β‐cateninGOF) mutants. These data indicate that the exogenously expressed Wnt3a stimulates the Wnt/β‐catenin signaling pathway, as expected. The Rosa26Wnt3a mouse line should prove to be an invaluable tool to study the function of Wnt3a in vivo.  相似文献   

14.
BACKGROUND: AXIN2 and CDH1 genes play important roles during craniofacial morphogenesis. Mutations in these genes have been described in families presenting colorectal cancer and tooth agenesis, and gastric cancer and cleft lip/palate (CL/P). Oral clefts have been associated with tooth agenesis. We investigated if AXIN2 and CDH1 polymorphisms were associated with clefts or with any associated dental subphenotypes. METHODS: Markers in AXIN2 and CDH1 were genotyped using Taqman chemistry in a sample cohort comprised of 500 cleft individuals and 500 unrelated controls. RESULTS: Comparison between cleft and control groups showed a trend for association for AXIN2 with incomplete cleft palate (p = .006) and CDH1 with unilateral CL/P (p = .03 for left CL/P and p = .04 for right CL/P). Comparison of cleft subphenotypes with tooth agenesis and controls revealed borderline associations for CDH1 (p = .008) and AXIN2 (p = .01) with unilateral right CL/P with tooth agenesis. CONCLUSIONS: We observed only borderline results for the association of AXIN2 and CDH1 with CL/P with and without tooth agenesis. Nevertheless, implication of these genes in the simultaneous occurrence of CL/P and cancer, and in tooth agenesis and cancer, is rather intriguing and warrants further investigations with other geographic and ethnic populations. Birth Defects Research (Part A), 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
16.
Müller glia can be stimulated to de‐differentiate, proliferate, and form Müller glia‐derived progenitor cells (MGPCs) that are capable of producing retinal neurons. The signaling pathways that influence the de‐differentiation of mature Müller glia and proliferation of MGPCs may include the Wnt‐pathway. The purpose of this study was to investigate how Wnt‐signaling influences the formation of MGPCs in the chick retina in vivo. In NMDA‐damaged retinas where MGPCs are known to form, we find dynamic changes in retinal levels of potential readouts of Wnt‐signaling, including dkk1, dkk3, axin2, c‐myc, tcf‐1, and cd44. We find accumulations of nuclear β‐catenin in MGPCs that peaks at 3 days and rapidly declines by 5 days after NMDA‐treatment. Inhibition of Wnt‐signaling with XAV939 in damaged retinas suppressed the formation of MGPCs, increased expression of ascl1a and decreased hes5, but had no effect upon the differentiation of progeny produced by MGPCs. Activation of Wnt‐signaling, with GSK3β‐inhibitors, in the absence of retinal damage, failed to stimulate the formation of MGPCs, whereas activation of Wnt‐signaling in damaged retinas stimulated the formation of MGPCs. In the absence of retinal damage, FGF2/MAPK‐signaling stimulated the formation of MGPCs by activating a signaling network that includes Wnt/β‐catenin. In FGF2‐treated retinas, inhibition of Wnt‐signaling reduced numbers of proliferating MGPCs, whereas activation of Wnt‐signaling failed to influence the formation of proliferating MGPCs. Our findings indicate that Wnt‐signaling is part of a network initiated by FGF2/MAPK or retinal damage, and activation of canonical Wnt‐signaling is required for the formation of proliferating MGPCs. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 983–1002, 2016  相似文献   

17.
Wang J  Liu B  Gu S  Liang J 《Cell proliferation》2012,45(2):121-131
Objectives: The Wnt signalling pathway has been shown to play an important role in tooth development, however its effects with stem cells from the apical papilla (SCAP) have remained unclear. The purpose of this study was to determine effects of Wnt/β‐catenin on proliferation and differentiation of SCAP in vitro. Materials and methods: SCAP were obtained, identified and cultured. Cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of mineralization‐related genes and mineralized nodule formation were measured in presence or absence of various concentrations of lithium chloride. Results: MTT assay and flow cytometry demonstrated that Wnt/β‐catenin activity could promote proliferation of SCAP. Real‐time PCR analysis found that Wnt/β‐catenin strongly upregulated expression of dentine sialophosphoprotein, osteocalcin and ALP in SCAP after incubation with mineralization induction medium, while ALP and alizarin red staining indicated that Wnt/β‐catenin enhanced ALP activity and formation of mineralized nodules. Conclusion: Our results suggest that canonical Wnt/β‐catenin signalling promotes proliferation and odonto/osteogenic differentiation of SCAP.  相似文献   

18.
Transmembrane protein 88 (TMEM88) is a potential 2‐transmembrane‐type protein that interacts with the PDZ domain of Dishevelled‐1 (DVL‐1), a crucial component of Wnt signalling pathway through its C‐terminal Val‐Trp‐Val (VWV) motif in Xenopus embryo cells. Since the significant function of β‐catenin in liver fibrosis, it is urgent to study the TMEM88 mechanism in liver fibrosis. The current research was for evaluating the function of TMEM88 in the process of the liver fibrosis and clarifying the inherent mechanism. The study found that TMEM88 is decreased in human fibrotic liver tissues. Functionally, TMEM88 significantly reduced the expression levels of α‐smooth muscle actin (α‐SMA) and collagen type I (Col.I) and repressed extracellular matrix (ECM) accumulation by restoring the balance between matrix metalloproteinases (MMPs) and TIMPs (tissue inhibitor of metalloproteinases). TMEM88 inhibited HSCs proliferation and evaluated the apoptosis of activated LX‐2 cells by regulating Wnt3a, Wnt2b and β‐catenin of Wnt/β‐catenin signalling pathway. Moreover, we demonstrated that miR‐708 particularly targeted TMEM88 3′‐UTR regions and down‐regulated the expression level of TMEM88 in TGF‐β1‐stimulated LX‐2 cells. MiR‐708 promoted the generation of ECM and cell activation in activated LX‐2 cells. These results determined that miR‐708 could promote HSCs activation and enhance ECM accumulation via direct targeting TMEM88 by Wnt/β‐catenin signalling pathway. This will provide a potential target for future research in the process of liver fibrosis.  相似文献   

19.
GSK‐3β is a key molecule in several signalling pathways, including the Wnt/β‐catenin signalling pathway. There is increasing evidence suggesting Wnt/β‐catenin signalling is involved in the neural differentiation of embryonic, somatic and neural stem cells. However, a large body of evidence indicates that this pathway maintains stem cells in a proliferative state. To address this controversy, we have investigated whether the Wnt/β‐catenin pathway is present and involved in the neural differentiation of newly introduced USSCs (unrestricted somatic stem cells). Our results indicate that the components of Wnt/β‐catenin signalling are present in undifferentiated USSCs. We also show that the treatment of neurally induced USSCs with BIO (6‐bromoindirubin‐3′‐oxime), a specific GSK‐3β inhibitor and Wnt activator, for 5 and 10 days results in increased expression of a general neuronal marker (β‐tubulin III). Moreover, the expression of pGSK‐3β and stabilized β‐catenin increased by BIO in neurally induced USSCs, indicates that the Wnt pathway is activated and functional in these cells. Thus, inhibition of GSK‐3β in USSCs enhances their neural differentiation, which suggests a positive role of the Wnt/β‐catenin signalling pathway towards neural fate.  相似文献   

20.
The DNA‐binding protein TRF2 is essential for telomere protection and chromosome stability in mammals. We show here that TRF2 expression is activated by the Wnt/β‐catenin signalling pathway in human cancer and normal cells as well as in mouse intestinal tissues. Furthermore, β‐catenin binds to TRF2 gene regulatory regions that are functional in a luciferase transactivating assay. Reduced β‐catenin expression in cancer cells triggers a marked increase in telomere dysfunction, which can be reversed by TRF2 overexpression. We conclude that the Wnt/β‐catenin signalling pathway maintains a level of TRF2 critical for telomere protection. This is expected to have an important role during development, adult stem cell function and oncogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号