首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many mouse models exist for neural tube defects (NTDs), but only few of them are relevant for human patients that are born alive with spina bifida aperta. NTDs in humans show a complex inheritance, which most likely result from the involvement of a variety of predisposing genetic and environmental factors. Hints toward the identity of predisposing genetic factors for human NTDs could come from mouse studies on the development of the neural tube and spinal cord, as well as from studies on associated features of this type of diseases. Among such features is the observation that pregnancies affected by a neural tube defect frequently show changes in thymus morphology, and in both neonatal and maternal T-cell repertoire. The genes for E2a and Pax1 have both been implicated in not only paraxial mesodermal development, but also in that of the immune system. Moreover, Pax1 mutant mice have been shown to display NTDs in digenic mouse models. In the present study we have investigated the phenotype of E2a null mutant mice that are also heterozygous for the so-called undulated mutation in Pax1. Here we report that such double-mutant mice develop a non-lethal NTD that strongly resembles the classic human NTD: spina bifida aperta, associated with defects of the axial skeleton, immune system and urinary tract.  相似文献   

2.
Neural tube defects (NTDs) are severe congenital malformations affecting 1-2 in 1,000 live births, whose etiology is multifactorial, involving environmental and genetic factors. NTDs arise as consequence of the failure of fusion of the neural tube early during embryogenesis. NTDs' pathogenesis has been linked to genes involved in folate metabolism, consistent with an epidemiologic evidence that 70% of NTDs can be prevented by maternal periconceptional supplementation. However, polymorphisms in such genes are not linked in all populations, suggesting that other genetic factors and environmental factors could be involved. Animal models have provided crucial mechanistic information and possible candidate genes to explain susceptibility to NTDs. A crucial role has been assigned to the planar cell polarity (PCP) pathway, a highly conserved, non-canonical Wnt-frizzled-dishevelled signaling cascade that plays a key role in establishing and maintaining polarity in the plane of the epithelium and in the process of convergent extension during gastrulation and neurulation in vertebrates. The Loop-tail (Lp) mouse that develops craniorachischisis carry missense mutations in the PCP core gene Vangl2, that is the mammalian homolog of the Drosophila Strabismus/Van gogh (Stbm/Vang). The presence of mutations in human VANGL1 and VANGL2 genes encourages us to extend the investigation to other PCP genes that, with VANGL, play an essential role in neurulation during development.  相似文献   

3.
Neural tube defects (NTD) together with cardiovascular system defects are the most common malformations in the Polish population (2.05-2.68/1000 newborns). They arise during early embryogenesis and are caused by an improper neural groove closure during the neurulation process. NTD can arise from the influence of specific environmental factors on the foetus. The genetic factor is also very important, because NTDs have multigenetic conditioning. It was suggested that genes connected with the regulation of neurulation could also be involved in NTD aetiology, especially when their deletion or modification leads to neural tube defects in the mouse model. Examples are genes from the PAX family, T (Brachyury), BRCA1 and PDGFRA genes.  相似文献   

4.
《Epigenetics》2013,8(7):875-883
The molecular requirements for neural tube closure are complex. This is illustrated by the occurrence of neural tube defects (NTDs) in many genetic mouse mutants, which implicate a variety of genes, pathways and cellular functions. NTDs are also prevalent birth defects in humans, affecting around 1 per 1000 pregnancies worldwide. In humans the causation is thought to involve the interplay of fetal genes and the effect of environmental factors. Recent studies on the aetiology of human NTDs, as well as analysis of mouse models, have raised the question of the possible involvement of epigenetic factors in determining susceptibility. A consideration of potential causative factors in human NTDs must now include both alterations in the regulation of gene expression, through mutation of promoter or regulatory elements, and the additional analysis of epigenetic regulation. Alterations in the epigenetic status can be directly modified by various environmental insults or maternal dietary factors.  相似文献   

5.
The molecular requirements for neural tube closure are complex. This is illustrated by the occurrence of neural tube defects (NTDs) in many genetic mouse mutants, which implicate a variety of genes, pathways and cellular functions. NTDs are also prevalent birth defects in humans, affecting around 1 per 1,000 pregnancies worldwide. In humans the causation is thought to involve the interplay of fetal genes and the effect of environmental factors. Recent studies on the etiology of human NTDs, as well as analysis of mouse models, have raised the question of the possible involvement of epigenetic factors in determining susceptibility. A consideration of potential causative factors in human NTDs must now include both alterations in the regulation of gene expression, through mutation of promoter or regulatory elements and the additional analysis of epigenetic regulation. Alterations in the epigenetic status can be directly modified by various environmental insults or maternal dietary factors.Key words: neural tube defects, diet, folic acid, epigenome, epigenetic regulation, methylation, chromatin, histones, acetylation  相似文献   

6.
Neural tube defects (NTDs), such as spina bifida (SB) or exencephaly, are common congenital malformations leading to infant mortality or severe disability. The etiology of NTDs is multifactorial with a strong genetic component. More than 70 NTD mouse models have been reported, suggesting the involvement of distinct pathogenetic mechanisms, including faulty cell death regulation. In this review, we focus on the contribution of functional genomics in elucidating the role of apoptosis and autophagy genes in neurodevelopment. On the basis of compared phenotypical analysis, here we discuss the relative importance of a tuned control of both apoptosome-mediated cell death and basal autophagy for regulating the correct morphogenesis and cell number in developing central nervous system (CNS). The pharmacological modulation of genes involved in these processes may thus represent a novel strategy for interfering with the occurrence of NTDs.  相似文献   

7.
BACKGROUND: The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS: The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS: Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS: If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.  相似文献   

8.
Nonsyndromic cleft lip and palate (CLP) is among the most common human birth defects. Transmission patterns suggest that the causes are "multifactorial" combinations of genetic and nongenetic factors, mostly distinct from those causing cleft secondary palate (CP). The major etiological factors are largely unknown, and the embryological mechanisms are not well understood. In contrast to CP or neural tube defects (NTD), CLP is uncommon in mouse mutants. Fourteen known mutants or strains express CLP, often as part of a severe syndrome, whereas nonsyndromic CLP is found in two conditional mutants and in two multifactorial models based on a hypomorphic variant with an epigenetic factor. This pattern suggests that human nonsyndromic CLP is likely caused by regulatory and hypomorphic gene variants, and may also involve epigenetics. The developmental pathogenic mechanism varies among mutants and includes deficiencies of growth of the medial, lateral or maxillary facial prominences, defects in the fusion process itself, and shifted midline position of the medial prominences. Several CLP mutants also have NTD, suggesting potential genetic overlap of the traits in humans. The mutants may reflect two interacting sets of genetic signaling pathways: Bmp4, Bmpr1a, Sp8, and Wnt9b may be in one set, and Tcfap2a and Sox11 may be in another. Combining the results of chromosomal linkage studies of unidentified human CLP genes with insights from the mouse models, the following previously unexamined genes are identified as strong candidate genes for causative roles in human nonsyndromic CLP: BMP4, BMPR1B, TFAP2A, SOX4, WNT9B, WNT3, and SP8.  相似文献   

9.
A hereditary contribution to the etiology of neural tube defects (NTDs) has been suggested by clinical studies and animal models. To evaluate the hypothesis that common genes are important for both neural tube defects and neural crest anomalies, we examined children with developmental abnormalities of the spinal cord for anomalies of neural crest-derived structures. Neural crest anomalies, particularly auditory and pigmentary disorders, were identified and classified according to inheritance and type of anomaly. Of the 515 children screened, 44 (8.5%) had neural crest anomalies, 20 (3.9%) of which were apparently familial. Another 19 (3.7%) families had neural crest anomalies in two or more close relations, but the NTD subject was unaffected. Sixteen (3.1%) children with NTDs had a recognizable syndrome, including nine (1.7%) with a subtype of the Waardenburg syndromes. The coincidence of familial neural crest anomaly syndromes in subjects with spina bifida implies that defects in genes underlying neural crest development may contribute to the etiology of neural tube defects in a fraction of cases. The rate of anomalies and familial syndromes of neural crest-derived structures must be assessed in an adequate control sample to evaluate whether or not these abnormalities constitute risk factors for NTDs.  相似文献   

10.
11.
BACKGROUND: The etiology of neural tube defects (NTDs) is multifactorial, with environmental and genetic determinants. Folate supplementation prevents the majority of NTDs, and a polymorphism in methylenetetrahydrofolate reductase (MTHFR) has become recognized as a genetic risk factor. The mechanisms by which folate affects NTD development are unclear. The Splotch (Sp) mouse is a well-characterized mouse model for studying spontaneous NTDs. To assess the potential interaction between folate metabolism and the Sp mutant in NTD development, we studied mice with both Sp and Mthfr mutations, as well as the interaction between Sp and low dietary folate. METHODS: Wild-type, single Mthfr+/-mutant, single Sp/+mutant, and double mutant (Mthfr+/-, Sp/+) female mice were mated with males of the same genotype. Embryos were examined for NTDs on gestational day (GD) 13.5. To investigate the effects of folate deficiency on Sp mice, Sp/+female mice were fed a control diet (CD), a moderately folic acid-deficient diet (MFADD), or a severely folic acid-deficient diet (SFADD). They were mated with Sp/+males and the embryos were examined. RESULTS: There were no differences in the incidence or severity of NTDs in embryos from double-mutant mating pairs compared to those from single Sp mutants. Embryos from Mthfr+/-dams did not exhibit NTDs. Diets deficient in folate did not influence the incidence or severity of NTDs in embryos from Sp/+mice. CONCLUSIONS: We did not observe an interaction between Sp and Mthfr mutations, or between the Sp mutation and low dietary folate, in NTD development in Splotch mice.  相似文献   

12.
Investigations into the etiology of neural tube defects   总被引:5,自引:0,他引:5  
Neural tube defects (NTDs) are serious malformations affecting approximately 1 per 1000 births, yet the mechanisms by which they arise are unknown. There have been consistent efforts in many fields of research to elucidate the etiology of this multifactorial condition. While no single gene has been identified as a major independent risk factor for NTDs, candidate genes have been proposed that may modify the effects of maternal and/or embryonic exposures. Folate supplementation effectively reduces the occurrence of NTDs and, consequently, has focused much research on metabolism of folate-related pathways during pregnancy and development. Further understanding of normal development and how teratogens can perturb these orchestrated processes also remains at the fore of modern scientific endeavors. The composite of these factors remains fragmented; the aim of this review is to provide the reader with a summary of sentinel and current works in the body of literature addressing NTD disease etiology.  相似文献   

13.
Despite the fact that neural tube defects (NTDs) are the most common congenital malformations of the central nervous system, investigators have yet to identify responsible gene(s). Research efforts have been productive in the identification of environmental factors, such as periconceptional folic acid supplementation, that modulate risk for the development of NTDs. Studies of the folic acid biosynthetic pathway led to the discovery of an association between elevated levels of homocysteine and NTD risk. Researchers subsequently identified single nucleotide polymorphisms in the gene coding for the enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR). Association studies suggested it was a potential risk factor for NTDs, because the thermolabile form of the enzyme led to elevated homocysteine concentrations when folic acid intake is low. Numerous studies analyzing MTHFR variants have resulted in positive associations with increased NTD risk only in certain populations, suggesting that these variants are not large contributors to the etiology of NTDs. With our limited understanding of the genes involved in regulating NTD susceptibility, the paucity of data on how folic acid protects the developing embryo, as well as the observed decrease in birth prevalence of NTDs following folic acid supplementation and food fortification, it makes little sense for prospective parents to be tested for MTHFR variants, or for variants of other known folate pathway genes.  相似文献   

14.
Neural tube defects (NTDs) are complex congenital malformations resulting from incomplete neurulation in embryo. Despite surgical repair of the defect, most of the patients who survive with NTDs have a multiple system handicap due to neuron deficiency of the defective spinal cord. In this study, we successfully devised a prenatal surgical approach and transplanted mesenchymal stem cells (MSCs) to foetal rat spinal column to treat retinoic acid induced NTDs in rat. Transplanted MSCs survived, grew and expressed markers of neurons, glia and myoblasts in the defective spinal cord. MSCs expressed and perhaps induced the surrounding spinal tissue to express neurotrophic factors. In addition, MSC reduced spinal tissue apoptosis in NTD. Our results suggested that prenatal MSC transplantation could treat spinal neuron deficiency in NTDs by the regeneration of neurons and reduced spinal neuron death in the defective spinal cord.  相似文献   

15.
16.
BACKGROUND: Neural tube defects (NTDs) are complex embryological malformations, affecting 1 in 1,000 live births. Antisense studies have implicated murine Mab21 genes as having an important role in neural tube development. We investigated whether MAB21L1/L2 genes could be involved in the aetiology of NTDs. METHODS: Denaturing HPLC (DHPLC) analysis of MAB21 genes was performed in 116 NTD cases. A case-control approach was used to test if the two single nucleotide polymorphisms (SNPs) of the MAB21L1 gene might be associated with increased NTD risk. RESULTS: No pathological variants of MAB21L1/L2 genes were identified by DHPLC analysis. Case-control studies demonstrated that the two SNPs (CAG triplets in 5'UTR; A-->C in 3'UTR) in the MAB21L1 gene are unlikely to be directly responsible for myelomeningocele. CONCLUSIONS: We suggest that MAB21 genes are unlikely to have substantial impact on NTDs. These preliminary findings will need to be investigated in larger samples before firm conclusions can be made.  相似文献   

17.
BACKGROUND: Neural tube defects (NTDs) are considered complex, with both genetic and environmental factors implicated. To date, no major causative genes have been identified in humans despite several investigations. The first genomewide screen in NTDs demonstrated evidence of linkage to chromosomes 7 and 10. This screen included 44 multiplex families and consisted of 402 microsatellite markers spaced approximately 10 cM apart. Further investigation of the genomic screen data identified a single large multiplex family, pedigree 8776, as primarily driving the linkage results on chromosome 7. METHODS: To investigate this family more thoroughly, a high-density single nucleotide polymorphism (SNP) screen was performed. Two-point and multipoint linkage analyses were performed using both parametric and nonparametric methods. RESULTS: For both the microsatellite and SNP markers, linkage analysis suggested the involvement of a locus or loci proximal to the telomeric regions of chromosomes 2q and 7p, with both regions generating a LOD* score of 3.0 using a nonparametric identity by descent relative sharing method. CONCLUSIONS: The regions with the strongest evidence for linkage map proximal to the telomeres on these two chromosomes. In addition to mutations and/or variants in a major gene, these loci may harbor a microdeletion and/or translocation; potentially, polygenic factors may also be involved. This single family may be promising for narrowing the search for NTD susceptibility genes.  相似文献   

18.
We reviewed the published findings from the Texas Neural Tube Defect Project, a 6‐year case‐control study (1995–2000) of neural tube defects (NTDs) on the Texas‐Mexico border. In this review, we highlight what was learned about environmental, genetic, and nutritional factors (i.e., those related to the folate and other metabolic pathways) and the novel putative risk factors that emerged from this study of Mexican American women living on the Texas‐Mexico border. Our investigations of the micronutrients and metabolic pathways involved confirmed the findings of other researchers that increased folate intake has a protective effect and that low serum B12, high serum homocysteine levels, and obesity independently contribute to risk. Studies of this population also have implicated hyperinsulinemia and low ferritin, metabolic risk factors, which require additional study to elucidate their physiologic mechanism. Environmental contaminants such as heavy metals, pesticides, and polychlorinated biphenyls (PCBs), which were of community concern, did little to explain NTD risk. Studies in this folic acid deficit‐population also revealed several novel risk factors, namely, diarrhea, stress, fumonisins, and the combination of nitrosatable drug exposure with high nitrate/nitrite intake. In conclusion, the 23 studies among the Mexican American women living along the Texas‐Mexico border have demonstrated the multifactorial nature of NTDs and that a population deficient in folic acid will be vulnerable to a variety of insults whether brought on by individual behaviors (e.g., obesity) or through the surrounding environment (e.g., fumonisins). Birth Defects Research (Part A), 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
BACKGROUND: Aberrations during neurulation due to genetic and/or environmental factors underlie a variety of adverse developmental outcomes, including neural tube defects (NTDs). Methylmercury (MeHg) is a developmental neurotoxicant and teratogen that perturbs a wide range of biological processes/pathways in animal models, including those involved in early gestation (e.g., cell cycle, cell differentiation). Yet, the relationship between these MeHg‐linked effects and changes in gestational development remains unresolved. Specifically, current information lacks mechanistic comparisons across dose or time for MeHg exposure during neurulation. These detailed investigations are crucial for identifying sensitive indicators of toxicity and for risk assessment applications. METHODS: Using a systems‐based toxicogenomic approach, we examined dose‐ and time‐dependent effects of MeHg on gene expression in C57BL/6 mouse embryos during cranial neural tube closure, assessing for significantly altered genes and associated Gene Ontology (GO) biological processes. Using the GO‐based application GO‐Quant, we quantitatively assessed dose‐ and time‐dependent effects on gene expression within enriched GO biological processes impacted by MeHg. RESULTS: We observed MeHg to significantly alter expression of 883 genes, including several genes (e.g., Vangl2, Celsr1, Ptk7, Twist, Tcf7) previously characterized to be crucial for neural tube development. Significantly altered genes were associated with development cell adhesion, cell cycle, and cell differentiation–related GO biological processes. CONCLUSIONS: Our results suggest that MeHg‐induced impacts within these biological processes during gestational development may underlie MeHg‐induced teratogenic and neurodevelopmental toxicity outcomes. Birth Defects Res (Part B) 89:188–200, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Despite compelling epidemiological evidence that folic acid supplements reduce the frequency of neural tube defects (NTDs) in newborns, common variant association studies with folate metabolism genes have failed to explain the majority of NTD risk. The contribution of rare alleles as well as genetic interactions within the folate pathway have not been extensively studied in the context of NTDs. Thus, we sequenced the exons in 31 folate-related genes in a 480-member NTD case-control population to identify the full spectrum of allelic variation and determine whether rare alleles or obvious genetic interactions within this pathway affect NTD risk. We constructed a pathway model, predetermined independent of the data, which grouped genes into coherent sets reflecting the distinct metabolic compartments in the folate/one-carbon pathway (purine synthesis, pyrimidine synthesis, and homocysteine recycling to methionine). By integrating multiple variants based on these groupings, we uncovered two provocative, complex genetic risk signatures. Interestingly, these signatures differed by race/ethnicity: a Hispanic risk profile pointed to alterations in purine biosynthesis, whereas that in non-Hispanic whites implicated homocysteine metabolism. In contrast, parallel analyses that focused on individual alleles, or individual genes, as the units by which to assign risk revealed no compelling associations. These results suggest that the ability to layer pathway relationships onto clinical variant data can be uniquely informative for identifying genetic risk as well as for generating mechanistic hypotheses. Furthermore, the identification of ethnic-specific risk signatures for spina bifida resonated with epidemiological data suggesting that the underlying pathogenesis may differ between Hispanic and non-Hispanic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号