首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
Extensive and dynamic chromatin remodeling occurs after fertilization, including DNA methylation and histone modifications. These changes underlie the transition from gametic to embryonic chromatin and are thought to facilitate early embryonic development. Histone H3 lysine 4 methylation (H3K4me) is an important epigenetic mechanism that associates with gene-specific activation and functions in development. However, dynamic regulation of H3K4me during early embryonic development remains unclear. Herein, the authors examined the dynamic changes of H3K4me and its key regulators (Ash1l, Ash2l, Kmt2a, Kmt2b, Kmt2c, Setd1a, Setd7, Kdm1a, Kdm1b, Kdm5a, Kdm5b, Kdm5c, and Kdm5d) in mouse oocytes and preimplantation embryos. An increase in levels of H3K4me2 and me3 was observed at the one- to two-cell stages (P?P?P?相似文献   

3.
4.
Porcine zygotic genome activation (ZGA) occurs along with global epigenetic remodeling at the 4-cell stage. These processes are regulated by histone acetylation, which requires acetyl-coenzyme A (CoA). Pyruvate dehydrogenase complex (PDC) is a crucial enzyme in glucose metabolism that converts pyruvate into acetyl-CoA. In mammalian cells, acetyl-CoA is produced by pyruvate dehydrogenase alpha 1 (PDHA1) translocated into the nucleus in special conditions. To determine whether zygotic PDHA1 plays a critical role in promoting histone acetylation during ZGA, a CRISPR/Cas9 genome editing system using multiple guide RNAs was employed to generate a PDHA1-targeted parthenogenetic embryo model. Results of immunofluorescent staining showed that the nuclear accumulation of PDHA1 during ZGA was significantly inhibited by PDHA1 targeting. Meanwhile, the 4-cell arrest rate significantly increased at 72 h after activation, indicating impeded embryonic development. In addition, nuclear histone acetylation significantly decreased when PDHA1 was targeted, and quantitative PCR showed that expression of several zygotic genes was significantly decreased in the PDHA1-targeting group compared to the control group. Overexpression of PDHA1 recovered the nuclear PDHA1, H3K9Ac and H3K27Ac and EIF1A expression levels. Moreover, the 5-to-8-cell-stage embryo development rate was only partially rescued. In conclusion, expression of zygotic origin PDHA1 contributes to porcine ZGA by maintaining histone acetylation in porcine embryos.  相似文献   

5.
6.
7.
TRPS1, the gene mutated in human "Tricho-Rhino-Phalangeal syndrome," encodes a multi zinc-finger nuclear regulator of chondrocyte proliferation and differentiation. Here, we have identified a new function of Trps1 in controlling mitotic progression in chondrocytes. Loss of Trps1 in mice leads to an increased proportion of cells arrested in mitosis and, subsequently, to chromosome segregation defects. Searching for the molecular basis of the defect, we found that Trps1 acts as regulator of histone deacetylation. Trps1 interacts with two histone deacetylases, Hdac1 and Hdac4, thereby increasing their activity. Loss of Trps1 results in histone H3 hyperacetylation, which is maintained during mitosis. Consequently, chromatin condensation and binding of HP1 is impaired, and Trps1-deficient chondrocytes accumulate in prometaphase. Overexpression of Hdac4 rescues the mitotic defect of Trps1-deficient chondrocytes, identifying Trps1 as an important regulator of chromatin deacetylation during mitosis in chondrocytes. Our data provide the first evidence that the control of mitosis can be linked to the regulation of chondrocyte differentiation by epigenetic consequences of altered Hdac activity.  相似文献   

8.
9.
Phosphorylated Ser473‐Akt (p‐Ser473‐Akt) is extensively studied as a correlate for the activity of Akt, which plays an important role in mouse oogenesis and preimplantation embryogenesis. However, little progress has been made about its effect on the mouse zygotic genome activation (ZGA) of 2‐cell stage in mouse preimplantation embryos. In this study, we confirmed its localization in the pronuclei of 1‐cell embryos and found that p‐Ser473‐Akt acquired prominent nucleus localization in 2‐cell embryos physiologically. Akt specific inhibitors API‐2 and MK2206 could inhibit the development of mouse preimplantation embryos in vitro, and induce 2‐cell arrest at certain concentrations. 2‐cell embryos exposed to 2.0 μmol/L API‐2 or 30 μmol/L MK2206 displayed attenuated immunofluorescence intensity of p‐Ser473‐Akt in the nucleus. Simultaneously, qRT‐PCR results revealed that 2.0 μmol/L API‐2 treatment significantly downregulated the mRNA pattern of MuERV‐L and eIF‐1A, two marker genes of ZGA, suggesting a defect in ZGA compared with that of control group. Collectively, our work demonstrated the nuclear localization of p‐Ser473‐Akt during major ZGA, and Akt specific inhibitors API‐2 and MK2206 which led to 2‐cell arrest inhibited p‐Ser473‐Akt from translocating into the nucleus of 2‐cell embryos with defective ZGA as well, implying p‐Ser473‐Akt may be a potential player in the major ZGA of 2‐cell mouse embryos.  相似文献   

10.
The epigenetic marks H3K27me3 and H3K4me3 are important repressive and permissive histone modifications, respectively, which are involved in gene regulation such as Hox gene expression during embryonic development. In this study, we investigated the global levels of these two histone modifications. We also investigated the expression of H3K27me3's methyltransferase (EZH2), EZH2 co‐factors (EED and SUZ12) and demethylases (JMJD3 and UTX), as well as H3K4me3's methylases (ASH1L and MLL1) and demethylase (RBP2) in porcine pre‐implantation embryos. In addition, the expression of Hox genes, HOXA2, HOXA3, HOXA7, HOXA10, HOXB4, HOXB7, HOXC8, HOXD8, and HOXD10 was investigated. We found that global levels of H3K27me3 decreased from the 1‐ to the 4‐cell stage, corresponding to the time of major embryonic genome activation. Subsequently, the levels increased in hatched blastocysts, particularly in the trophectoderm. The expression levels of EZH2, EED, SUZ12, JMJD3, and UTX correlated well with these findings. The global levels of H3K4me3 decreased from the 1‐cell to the morula stage and increased in hatched blastocysts, especially in trophectoderm. A peak in expression of ASH1L was seen at the 4‐cell stage, but overall, expression of ASH1L, MLL1, and RBP2 correlated poorly with H3K4me3. HOXA3, A7, and B4 were expressed in 4‐cell embryos, and HOXA7, A10, B4, and D8 were expressed in hatched blastocysts, and did not correlate well to global methylation of H3K27me3 or H3K4me3. Thus, H3K4me3 may play a role in early porcine embryonic genome activation, whereas, H3K27me3 may be involved in initial cell lineage segregation in the blastocyst. Mol. Reprod. Dev. 77: 540–549, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Changes in H3K79 methylation during preimplantation development in mice   总被引:1,自引:0,他引:1  
The gene expression pattern of differentiated oocytes is reprogrammed into that of totipotent preimplantation embryos before and/or after fertilization. To elucidate the mechanisms of genome reprogramming, we investigated histone H3 lysine 79 dimethylation (H3K79me2) and trimethylation (H3K79me3) in oocytes and preimplantation embryos via immunocytochemistry. In somatic cells and oocytes, H3K79me2 was observed throughout the genome, whereas H3K79me3 was localized in the pericentromeric heterochromatin regions in which there are no active genes. Because H3K79me2 is considered an active gene marker, H3K79 methylation seems to have differing functions depending on the number of methyl groups added on the same residues. Both H3K79me2 and H3K79me3 decreased soon after fertilization, and the hypomethylated state was maintained at interphase (before the blastocyst stage), except for a transient increase in H3K79me2 at mitosis (M phase). H3K79me3 was not detected throughout preimplantation, even at M phase. To investigate the involvement of H3K79me2 in genome reprogramming, somatic nuclei were transplanted into enucleated oocytes. H3K79me2 in these nuclei was demethylated following parthenogenetic activation. However, the nuclei that had been transplanted into the parthenogenetic embryos 7 h after activation were not demethylated. This suggests that the elimination of H3K79 methylation after fertilization is involved in genomic reprogramming.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
BackgroundAluminium is an environmental neurotoxin to which human beings are extensively exposed. However, the molecular mechanism of aluminium toxicity remains unclear.MethodsThe changes in cognitive function of aluminum exposed workers under long-term occupational exposure were evaluated, and the relationship between cognitive changes, plasma memory related BDNF and EGR1 protein expression, and variations of epigenetic markers H3K4me3, H3K9me2, H3K27me3 expression levels in blood was explored.ResultsMMSE, DSFT, DST scores in cognitive function and the levels of plasma BDNF and EGR1 protein expression decreased with the increase of blood aluminum level. H3K4me3, H3K9me2, H3K27me3 expression levels in peripheral blood lymphocytes of aluminum exposed workers were statistically different (all P<0.05). H3K4me3, H3K9me2 and H3K27me3 expression levels in lymphocytes were correlated with blood aluminum level. BDNF, EGR1 protein level and H3K4me3, H3K9me2, H3K27me3 expression levels have different degrees of correlation. There was a linear regression relationship between plasma BDNF, H3K4me3 and H3K9me2. H3K9me2 had a greater effect on BDNF than H3K4me3. There is a linear regression relationship between EGR1, H3K4me3 and H3K27me3, and the influence of H3K4me3 on EGR1 is greater than that of H3K27me3 on EGR1.ConclusionAlummnum may regulate the expression of BDNF and EGR1 by regulating H3K4me3, H3K27me3 and H3K9me2, and affect the cognitive function of workers by affecting the expression of BDNF and EGR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号