首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Metabolism of arachidonic acid by cytochrome P450 (CYP) to biologically active eicosanoids has been recognized increasingly as an integral mediator in the pathogenesis of cardiovascular and metabolic disease. CYP epoxygenase-derived epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EET + DHET) and CYP ω-hydroxylase-derived 20-hydroxyeicosatetraenoic acid (20-HETE) exhibit divergent effects in the regulation of vascular tone and inflammation; thus, alterations in the functional balance between these parallel pathways in liver and kidney may contribute to the pathogenesis and progression of metabolic syndrome. However, the impact of metabolic dysfunction on CYP-mediated formation of endogenous eicosanoids has not been well characterized. Therefore, we evaluated CYP epoxygenase (EET + DHET) and ω-hydroxylase (20-HETE) metabolic activity in liver and kidney in apoE(-/-) and wild-type mice fed a high-fat diet, which promoted weight gain and increased plasma insulin levels significantly. Hepatic CYP epoxygenase metabolic activity was significantly suppressed, whereas renal CYP ω-hydroxylase metabolic activity was induced significantly in high-fat diet-fed mice regardless of genotype, resulting in a significantly higher 20-HETE/EET + DHET formation rate ratio in both tissues. Treatment with enalapril, but not metformin or losartan, reversed the suppression of hepatic CYP epoxygenase metabolic activity and induction of renal CYP ω-hydroxylase metabolic activity, thereby restoring the functional balance between the pathways. Collectively, these findings suggest that the kinin-kallikrein system and angiotensin II type 2 receptor are key regulators of hepatic and renal CYP-mediated eicosanoid metabolism in the presence of metabolic syndrome. Future studies delineating the underlying mechanisms and evaluating the therapeutic potential of modulating CYP-derived EETs and 20-HETE in metabolic diseases are warranted.  相似文献   

3.
Porphyria cutanea tarda is a liver disease characterized by excess production of uroporphyrin. We previously reported that acetone, an inducer of CYP2E1, enhances hepatic uroporphyrin accumulation in mice treated with iron dextran (Fe) and 5-aminolevulinic acid (ALA). Cyp2e1(-/-) mice treated with Fe and ALA were used to investigate whether CYP2E1 is required for the acetone effect. Hepatic uroporphyrin accumulation was stimulated by acetone in Cyp2e1(-/-) mice to the same extent as in wild-type mice. In the absence of acetone, uroporphyrin accumulated in Cyp2e1(-/-) mice treated with Fe and ALA, but less than in wildtype mice. However, in Cypla2(-/-) mice, uroporphyrin accumulation caused by Fe and ALA, with or without acetone, was completely prevented. Acetone was not an inducer of hepatic CYP1A2 in the wild-type mice. Although acetone is an inducer of CYP2E1, CYP1A2 appears to have the essential role in acetone-enhancement of uroporphyria.  相似文献   

4.
Previous work has demonstrated that the function of extrahepatic cytochrome P450 CYP1A1 is dependent on the availability of heme. CYP1A1 is involved in the activation of polyaromatic hydrocarbons. In the present study we used a transgenic mouse model with chronic impairment of heme synthesis - female porphobilinogen deaminase-deficient (PBGD-/-) mice - to investigate the effects of limited heme in untreated and beta-naphthoflavone (beta-NF)-treated animals on the function of CYP1A1 in brain. The heme content of PBGD-/- mice was diminished in the liver and brain compared to wild types. In the liver, partial heme deficiency led to less potent induction of CYP1A1 mRNA after beta-NF treatment. In the brain, CYP1A1 protein was detected not only at the endoplasmic reticulum (ER), but also in the cytosol of PBGD-/- mice. Furthermore, 7-deethylation of ethoxyresorufin, an indicator of CYP1A1 metabolic activity, could be restored by heme in cytosol of PBGD-/- mouse brain. Independent of the genotype, we found only one cyp1a1 gene product, indicating that the cytosolic appearance of CYP1A1 most likely did not originate from mutant alleles. We conclude that heme deficiency in the brain leads to incomplete heme saturation of CYP1A1, which causes its improper incorporation into the ER membrane and persistence in the cytosol. It is suggested that diseases caused by relative heme deficiency, such as hepatic porphyrias, may lead to impaired hemoprotein function in brain.  相似文献   

5.
Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.  相似文献   

6.
A mouse model with liver-specific deletion of the NADPH-cytochrome P450 reductase (Cpr) gene (designated Alb-Cre/Cprlox mice) was generated and characterized in this study. Hepatic microsomal CPR expression was significantly reduced at 3 weeks and was barely detectable at 2 months of age in the Alb-Cre+/-/Cprlox+/+ (homozygous) mice, with corresponding decreases in liver microsomal cytochrome P450 (CYP) and heme oxygenase (HO) activities, in pentobarbital clearance, and in total plasma cholesterol level. Nevertheless, the homozygous mice are fertile and are normal in gross appearance and growth rate. However, at 2 months, although not at 3 weeks, the homozygotes had significant increases in liver weight, accompanied by hepatic lipidosis and other pathologic changes. Intriguingly, total microsomal CYP content was increased in the homozygotes about 2-fold at 3 weeks and about 3-fold at 2 months of age; at 2 months, there were varying degrees of induction in protein (1-5-fold) and mRNA expression (0-67-fold) for all CYPs examined. There was also an induction of HO-1 protein (nearly 9-fold) but no induction of HO-2. These data indicate the absence of significant alternative redox partners for liver microsomal CYP and HO, provide in vivo evidence for the significance of hepatic CPR-dependent enzymes in cholesterol homeostasis and systemic drug clearance, and reveal novel regulatory pathways of CYP expression associated with altered cellular homeostasis. The Alb-Cre/Cprlox mouse represents a unique model for studying the in vivo function of hepatic HO and microsomal CYP-dependent pathways in the biotransformation of endogenous and xenobiotic compounds.  相似文献   

7.
Cytochrome P450 (P450) is a ubiquitous family of enzymes responsible for the metabolism of a wide variety of drugs and their metabolites, including cocaine. To investigate the effects of cocaine on myocardial injuries and cardiac P450 expression, BALB/c mice were injected daily intraperitoneally with cocaine (30 mg/kg) or cocaine plus pretreatment of P450 inhibitors for 14 days. Tumor necrosis factor-alpha (TNF-alpha) content and creatine phosphokinase (CPK) activity in mice hearts and serums were significantly increased after long-term treatment with cocaine. Pretreatment with the P450 inhibitor, cimetidine (Cime, 50 mg/kg) or metyrapone (Mety, 40 mg/kg) abolished or significantly attenuated the effects of cocaine on TNF-alpha and CPK activity. Western blot analysis shows that mouse cardiac tissues express the P450 isoforms CYP1A1, CYP1A2, and CYP2J2. The protein levels normalized with cyclophilin A were 1.20 plus minus 0.07, 0.67 plus minus 0.03, and 1.48 plus minus 0.01 for CYP1A1, CYP1A2, and CYP 2J2, respectively. After cocaine administration, CYP2J2 increased by 43.6% and CYP1A1 increased by 108.5%, but CYP1A2 was not significantly altered. However, the cytochrome P450 inhibitors Cime and Mety suppressed the cocaine-induced increase in CYP1A1 and CYP2J2 expression. Moreover, application of Cime or Mety alone did not alter the level of cardiac TNF-alpha or the expression of P450. Our results demonstrate that long-term exposure to cocaine causes an increase in cardiac CYP1A1 and CYP2J2 concentration. We speculate that induction of P450 isoforms may cause cardiac injury due to cocaine metabolites locally catalyzed by P450 or the increase in P450 expression itself.  相似文献   

8.
Indole-3-carbinol (I3C), a component of cruciferous vegetables, exhibits anti-carcinogenic activity in a variety of model systems. This activity has been attributed in part to the induction of cytochrome P450 CYP1A subfamily members and the resulting increased metabolic inactivation of chemical carcinogens. The present study was undertaken to assess the effects of I3C on several constitutive P450 activities that contribute to both carcinogen and steroid hormone metabolism. Mice were administered I3C in their diet at estimated daily doses of 250, 500 and 750 mg/kg for 1 week. Liver microsomes from treated and untreated mice were subsequently assayed for CYP1A-mediated ethoxy-resorufin O-deethylase (EROD) activity, estradiol 2-hydroxylase activity and seven different testosterone hydroxylase activities. I3C elevated EROD, estradiol 2-hydroxylase and testosterone 6 alpha-hydroxylase activities in a dose-dependent manner. The other six testosterone hydroxylase activities were not significantly affected by in vivo treatment with I3C. In addition to its effects on steroid hydroxylase activities, I3C also elevated NADPH-cytochrome P450 reductase activity, a necessary component to the P450 monooxygenase system. We next examined the direct in vitro effects of I3C and its acid condensation products, as are generated in the stomach following ingestion, on the P450 catalytic activities. Testosterone 6 beta-hydroxylase, the major testosterone hydroxylase activity in untreated mice, was significantly inhibited (IC50 approximately 12 micrograms/ml) by the acid condensation products of I3C. In contrast, all other P450 activities were not appreciably affected by I3C or its acid condensation products. These results indicate that I3C can elicit both inductive and suppressive effects on the constitutive P450s that participate in carcinogen and steroid hormone metabolism. This pleiotropic effect on hepatic catalytic enzymes may contribute to the anti-carcinogenic properties of this compound.  相似文献   

9.
This study was conducted to test the hypothesis that the cytochrome P-450 (CYP450) metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to the afferent arteriolar response to P2 receptor activation. Afferent arteriolar responses to ATP, the P2X agonist, alpha,beta-methylene ATP and the P2Y agonist UTP were determined before and after treatment with the selective CYP450 hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or the 20-HETE antagonist, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE). Stimulation with 1.0 and 10 microM ATP elicited an initial preglomerular vasoconstriction of 12 +/- 1% and 45 +/- 4% and a sustained vasoconstriction of 11 +/- 1% and 11 +/- 2%, respectively. DDMS or 20-HEDE significantly attenuated the sustained afferent arteriolar constrictor response to ATP. alpha,beta-Methylene ATP (1 microM) induced a rapid initial afferent vasoconstriction of 64 +/- 3%, which partially recovered to a stable diameter 10 +/- 1% smaller than control. Both DDMS and 20-HEDE significantly attenuated the initial vasoconstriction and abolished the sustained vasoconstrictor response to alpha,beta-methylene ATP. UTP decreased afferent diameter by 50 +/- 5% and 20-HEDE did not change this response. In addition, the ATP-induced increase in the intracellular Ca2+ concentration in preglomerular microvascular smooth muscle cells was significantly attenuated by 20-HEDE. Taken together, these results are consistent with the hypothesis that the CYP450 metabolite 20-HETE participates in the afferent arteriolar response to activation of P2X receptors.  相似文献   

10.
11.
The effect of 3,3-dichlorobenzidine (DCB), a potent inducer of CYP1A, on the levels of heme oxygenase-1 mRNA and metallothionein mRNAs was examined in the kidney, liver and lung of rats administered a single ip dose (157 μmol/kg) of the compound. DCB treatment increased heme oxygenase-I mRNA abundance in the kidney significantly from barely detectable levels in untreated animals; the maximum increase in the liver and lung was 24-fold and 4-fold, respectively. Hepatic microsomal heme oxygenase activity was also induced by DCB. In contrast with DCB, 2 other P450 inducers, β-naphthoflavone (β-NF) and phenobarbital did not elevate tissue HO-1 rnRNA levels. DCB pretreatment also elevated metallothionein mRNA levels in the kidney, liver and lung, with the effect in the lung being the least pronounced. In contrast with HO-1 mRNA, metallothionein mRNA was increased by the other P450 inducers examined. In vivo lipid peroxidation and in vitro NADPH-dependent microsomal lipid peroxidation were increased in the liver of DCB-treated rats but not in those of phenobarbital- or β-naphthoflavone-treated rats. Treatment with DCB or β-NF did not alter total hepatic microsomal P450 content, as measured spectrophotometrically, but induced the activity of CYP1A2. In contrast, the activity of CYP1A1 was induced to a lesser extent by DCB than by β-NF. The data show that DCB induces HO-1 as weD as P450 1A, confirm stimulation of lipid peroxidation by the compound, and suggest oxidative stress as a mechanism of HO-1 induction by the compound.  相似文献   

12.
Accumulating evidence, including experiments using cytochrome P450 1a2 (Cyp1a2) gene knock-out mice (Cyp1a2(−/−)), indicates that the development of chemically induced porphyria requires the expression of CYP1A2. It has also been demonstrated that iron enhances and expedites the development of experimental uroporphyria, but that iron alone without CYP1A2 expression, as in Cyp1a2(−/−) mice, does not cause uroporphyria. The role of iron in the development of porphyria has not been elucidated. We examined the in vivo effect of iron deficiency on hepatic URO accumulation in experimental porphyria. Mice were fed diets containing low (iron-deficient diet (IDD), 8.5 mg iron/kg) or normal (normal diet (ND), 213.7 mg iron/kg) levels of iron. They were treated with 3-methylcholanthrene (MC), an archetypal inducer of CYP1A, and 5-aminolevulinate (ALA), precursors of porphyrin and heme. We found that uroporphyrin (URO) levels and uroporphyrinogen oxidation (UROX) activity were markedly increased in ND mice treated with MC and ALA, while the levels were not raised in IDD mice with the same treatments. CYP1A2 levels and methoxyresorufin O-demethylase (MROD) activities, the CYP1A2-mediated reaction, were markedly induced in the livers of both ND and IDD mice treated with MC and ALA. UROX activity, supposedly a CYP1A2-dependent activity, was not enhanced in iron-deficient mice in spite of the fact of induction of CYP1A2. We showed that a sufficient level of iron is essential for the development of porphyria and UROX activity.  相似文献   

13.
Chronic treatment of rats with N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension mediated partly by enhanced angiotensin-I-converting enzyme (ACE) activity. We examined the influence of L-NAME on rat liver morphology, on hepatic glycogen, cholesterol, and triglyceride content, and on the activities of the cytochrome P450 isoforms CYP1A1/2, CYP2B1/2, CYP2C11, and CYP2E1. Male Wistar rats were treated with L-NAME (20 mg/rat per day via drinking water) for 2, 4, and 8 weeks, and their livers were then removed for analysis. Enzymatic induction was produced by treating rats with phenobarbital (to induce CYP2B1/2), beta-naphthoflavone (to induce CYP1A1/2), or pyrazole (to induce CYP2E1). L-NAME significantly elevated blood pressure; this was reversed by concomitant treatment with enalapril (ACE inhibitor) or losartan (angiotensin II AT(1) receptor antagonist). L-NAME caused vascular hypertrophy in hepatic arteries, with perivascular and interstitial fibrosis involving collagen deposition. Hepatic glycogen content also significantly increased. L-NAME did not affect fasting glucose levels but significantly reduced insulin levels and increased the insulin sensitivity of rats, based on an intraperitoneal glucose tolerance test. Immunoblotting experiments indicated enhanced phosphorylation of protein kinase B and of glycogen synthase kinase 3. All these changes were reversed by concomitant treatment with enalapril or losartan. L-NAME had no effect on hepatic cholesterol or triglyceride content or on the basal or drug-induced activities and protein expression of the cytochrome P450 isoforms. Thus, the chronic inhibition of NO biosynthesis produced hepatic morphological alterations and changes in glycogen metabolism mediated by the renin-angiotensin system. The increase in hepatic glycogen content probably resulted from enhanced glycogen synthase activity following the inhibition of glycogen synthase kinase 3 by phosphorylation.  相似文献   

14.
This investigation was designed to determine whether St. John's wort (SJW)(435 mg/kg/d), a readily available antidepressant, or its purported active constituents hypericin (1 mg/kg/d) and hyperforin (10 mg/kg/d) were able to induce various hepatic cytochrome P450 (CYP450) isoforms. SJW, hypericin and hyperforin were administered to male Swiss Webster mice for four consecutive days and hepatic microsomes were prepared on day 5. None of the three treatments resulted in a statistical change in total hepatic CYP450 (SJW treated 0.95 +/- 0.09 nmol/mg vs control 1.09 +/- 0.14 nmol/mg). Furthermore, the catalytic activities of CYP1A2. CYP2E1 and CYP3A were unchanged from control following all three treatments as determined by ethoxyresorufin O-deethylation, p-nitrophenol hydroxylation and erythromycin N-demethylation respectively. Additionally, western immunoblotting demonstrated that there was no significant change in the polypeptide levels of any of the three isoforms. These results indicate that four days of treatment with moderate to high doses of SJW, hyperforin or hypericin fails to induce these CYP450 isoforms in the male Swiss Webster mouse.  相似文献   

15.
The purpose of this study was to investigate the effect of interleukin 1 (IL 1) on glucocorticoid-regulated hepatic metabolism. Steroid binding in liver cytosol, plasma glucose, plasma corticosterone, and phosphoenolpyruvate carboxykinase (PEPCK) activity were assayed in C3H/HeJ mice after IL 1 administration. Mice received 5 pyrogenic U (PU) of rabbit IL 1 i.p. and were sacrificed 4 hr later. In adrenal-intact mice, steroid binding and plasma glucose were significantly decreased (63 and 64% of control) and plasma corticosterone was significantly elevated threefold. In adrenalectomized mice, IL 1 (5 PU) treatment produced similar results in steroid binding (66% of control) and plasma glucose (71% of control). PEPCK was measured in intact mice fasted overnight and treated with 5 PU of IL 1. PEPCK was induced in fasted control animals (23.1 +/- 1.4 U/mg) vs fed control animals (15.9 +/- 0.7 U/mg). IL 1 treatment inhibited the induction of PEPCK in fasted animals (13.4 +/- 2.0 U/mg) and caused a significant decrease in steroid binding (78% of fasted control) and plasma glucose (82% of fasted control). No difference in plasma corticosterone was seen in IL 1-treated mice and fasted control mice. These data indicate that IL 1 decreases intracellular steroid receptors, resulting in decreased induction of PEPCK and subsequent reduced gluconeogenesis and plasma glucose. We propose that IL 1 plays a regulatory role in glucocorticoid-regulated hepatic metabolism.  相似文献   

16.
Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP) superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM). Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine.  相似文献   

17.
The effects of long-term insulin-dependent diabetes on the enzymatic activities of hepatic cytochrome P450 isozymes were determined in rats rendered diabetic by the administration of streptozotocin and killed 4, 8, and 12 weeks following treatment. The O-dealkylations of ethoxy-resorufin and pentoxyresorufin were elevated in the diabetic animals throughout the study, the extent of increase being similar at all three time points. p-Nitrophenol hydroxylase activity was induced in the diabetic animals 4 weeks following treatment with streptozotocin, but the extent of increase became less pronounced with the progress of the disease. A modest increase in ethylmorphine N-demethylase activity was also observed but only in the diabetic animals killed 4 weeks after the induction of diabetes. Finally, lauric acid hydroxylase activity was elevated in the diabetic animals 4 weeks following streptozotocin administration but then declined rapidly with the duration of the disease. It is concluded that the duration of diabetes modulates the hepatic cytochrome P450 profile, with the effect being isoenzyme specific. Mechanisms that may account for these changes are discussed.  相似文献   

18.
19.
Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.  相似文献   

20.
This report suggests an important physiological role of a CYP in the accumulation of uroporphyrin I arising from catalytic oxidative conversion of uroporphyrinogen I to uroporphyrin I in the periplasm of Escherichia coli cultured in the presence of 5-aminolevulinic acid. A structurally competent Streptomyces griseus CYP105D1 was expressed as an engineered, exportable form in aerobically grown E. coli. Its progressive induction in the presence of 5-aminolevulinic acid-supplemented medium was accompanied by an accumulation of a greater than 100-fold higher amount of uroporphyrin I in the periplasm relative to cells lacking CYP105D1. Expression of a cytoplasm-resident engineered CYP105D1 at a comparative level to the secreted form was far less effective in promoting porphyrin accumulation in the periplasm. Expression at a 10-fold molar excess over the exported CYP105D1 of another periplasmically exported hemoprotein, the globular core of cytochrome b5, did not substitute the role of the periplasmically localized CYP105D1 in promoting porphyrin production. This, therefore, eliminated the possibility that uroporphyrin accumulation is merely a result of increased hemoprotein synthesis. Moreover, in the strain that secreted CYP105D1, uroporphyrin production was considerably reduced by azole-based P450 inhibitors. Production of both holo-CYP105D1 and uroporphyrin was dependent upon 5-aminolevulinic acid, except that at higher concentrations this resulted in a decrease in uroporphyrin. This study suggests that the exported CYP105D1 oxidatively catalyzes periplasmic conversion of uroporphyrinogen I to uroporphyrin I in E. coli. The findings have significant implications in the ontogenesis of human uroporphyria-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号