首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
The MET tyrosine kinase is the hepatocyte growth factor/scatter factor (HGF/SF) receptor, which elicits multiple biological responses in epithelial cells, including cell survival. We previously demonstrated that in stress conditions, the MET receptor is cleaved by caspases within its juxtamembrane region, generating a pro-apoptotic intracellular fragment of 40 kDa. The caspase cleavage site at aspartic acid D1000 is adjacent to tyrosine Y1001, which when phosphorylated upon MET activation, is involved in CBL recruitment, allowing receptor ubiquitination and down regulation. Scanning mutagenesis of the MET juxtamembrane region led us to demonstrate that V999 and D1000 are essential for the caspase cleavage, while D1000 and Y1001 are essential for CBL recruitment. By examining whether overlapping of these sites leads to a functional interference, an inverse relationship was found between generation of p40 MET and phosphorylation of MET, with a direct involvement of phosphorylated Y1001 in protecting MET against its caspase cleavage. A molecular modeling analysis of caspase 3 interaction with the juxtamembrane region of MET confirmed that phosphorylation of this tyrosine is not compatible with its recognition by active caspase 3. These data demonstrate a direct protection mechanism of an activated phosphorylated MET receptor, against its caspase-dependent cleavage.  相似文献   

2.
The MET tyrosine kinase, the receptor of hepatocyte growth factor-scatter factor (HGF/SF), is known to be essential for normal development and cell survival. We report that stress stimuli induce the caspase-mediated cleavage of MET in physiological cellular targets, such as epithelial cells, embryonic hepatocytes, and cortical neurons. Cleavage occurs at aspartic residue 1000 within the SVD site of the juxtamembrane region, independently of the crucial docking tyrosine residues Y1001 or Y1347 and Y1354. This cleavage generates an intracellular 40-kDa MET fragment containing the kinase domain. The p40 MET fragment itself causes apoptosis of MDCK epithelial cells and embryonic cortical neurons, whereas its kinase-dead version is impaired in proapoptotic activity. Finally, HGF/SF treatment does not favor MET cleavage and apoptosis, confirming the known survival role of ligand-activated MET. Our results show that stress stimuli convert the MET survival receptor into a proapoptotic factor.  相似文献   

3.
The MET tyrosine kinase receptor activated by its ligand HGF/SF, induces several cellular responses, including survival. Nonetheless, the MET receptor is cleaved in stress conditions by caspases within its intracellular region, generating a 40 kDa fragment, p40 MET, with pro-apoptotic properties. Here, we established that this cleavage splits the receptor at the juxtamembrane ESVD site, causing the concomitant generation of p100 MET, corresponding to the entire extracellular region of the MET receptor still spanning the membrane. This fragment is able to bind HGF/SF and to prevent HGF-dependent signaling downstream of full MET, demonstrating its function as a decoy receptor.  相似文献   

4.
The GRB2-associated binder 1 (GAB1) docking/scaffold protein is a key mediator of the MET-tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). Activated MET promotes recruitment and tyrosine phosphorylation of GAB1, which in turn recruits multiple proteins and mediates MET signaling leading to cell survival, motility, and morphogenesis. We previously reported that, without its ligand, MET is a functional caspase target during apoptosis, allowing the generation of a p40-MET fragment that amplifies apoptosis. In this study we established that GAB1 is also a functional caspase target by evidencing a caspase-cleaved p35-GAB1 fragment that contains the MET binding domain. GAB1 is cleaved by caspases before MET, and the resulting p35-GAB1 fragment is phosphorylated by MET upon HGF/SF binding and can interact with a subset of GAB1 partners, PI3K, and GRB2 but not with SHP2. This p35-GAB1 fragment favors cell survival by maintaining HGF/SF-induced MET activation of AKT and by hindering p40-MET pro-apoptotic function. These data demonstrate an anti-apoptotic role of caspase-cleaved GAB1 in HGF/SF-MET signaling.  相似文献   

5.
The receptor tyrosine kinase Met and its ligand, the hepatocyte growth factor, are essential to embryonic development, whereas the deregulation of Met signaling is associated with tumorigenesis. While ligand-activated Met promotes survival, caspase-dependent generation of the p40 Met fragment leads to apoptosis induction – hallmark of the dependence receptor. Although the survival signaling pathways induced by Met are well described, the pro-apoptotic signaling pathways are unknown. We show that, although p40 Met contains the entire kinase domain, it accelerates apoptosis independently of kinase activity. In cell cultures undergoing apoptosis, the fragment shows a mitochondrial localization, required for p40 Met-induced cell death. Fulminant hepatic failure induced in mice leads to the generation of p40 Met localized also in the mitochondria, demonstrating caspase cleavage of Met in vivo. According to its localization, the fragment induces mitochondrial permeabilization, which is inhibited by Bak silencing and Bcl-xL overexpression. Moreover, Met silencing delays mitochondrial permeabilization induced by an apoptotic treatment. Thus, the Met-dependence receptor in addition to its well-known role in survival signaling mediated by its kinase activity, also participates in the intrinsic apoptosis pathway through the generation of p40 Met – a caspase-dependent fragment of Met implicated in the mitochondrial permeabilization process.  相似文献   

6.
7.
Apoptosis is mediated by cysteine-dependent, aspartate-directed proteases of the caspase family that proteolyse strategic intracellular substrates to induce cell suicide. We describe here that engagement of apoptotic processes by Fas triggering or by staurosporine stimulation leads to the caspase-dependent inactivation of the nuclear factor kappa B (NF-kappaB) pathway after cleavage of IKK1 (IkappaB kinase 1) and NEMO (NF-kappaB essential modulator), which are needed to transduce NF-kappaB activation signals. In this study, we have analyzed in more detail, the role of NEMO cleavage, as NEMO, but not IKK1, is important for the pro-survival actions of NF-kappaB. We demonstrate that NEMO is cleaved after Asp355 to remove the last 64 C-terminal amino acids. This short form was unable to rescue NF-kappaB activation by tumor necrosis factor-alpha (TNF-alpha) when transfected in NEMO-deficient cells. Consequently, inactivation of NEMO resulted in an inhibition of the expression of antiapoptotic NF-kappaB-target genes coding for caspase inhibitors (cIAP-1, cIAP-2) or adaptors of the TNF receptor family. NEMO-deficient Jurkat cells transiently expressing a non-cleavable mutant of NEMO were less sensitive to TNF-alpha-induced apoptosis. Therefore, downmodulation of NF-kappaB activation via the proteolytic cleavage of NEMO could represent an amplification loop for apoptosis.  相似文献   

8.
Bid is instrumental in death receptor-mediated apoptosis where it is cleaved by caspase 8 at aspartate 60 and aspartate 75 to generate truncated Bid (tBID) forms that facilitate release of mitochondrial cytochrome c. Bid is also cleaved at these sites by caspase 3 that is activated downstream of cytochrome c release after diverse apoptotic stimuli. In this context, tBid may amplify the apoptotic process. Bid is phosphorylated in vitro by casein kinases that regulate its cleavage by caspase 8 (Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L. Antonsson, A., and Martinou, J.-C. (2001) Mol. Cell 8, 601-611). Using a Bid decapeptide substrate, we observed that phosphorylation at threonine 59 inhibited cleavage by caspase 8. This was also seen when recombinant Bid (rBid) and Bid isolated from murine kidney were incubated with casein kinase II. However, there were differences in the susceptibility of rBid and isolated Bid to cleavage by caspases 3 and 8. Caspase 8 cleaved rBid to generate two C-terminal products, p15 and p13 tBid, but produced only p15 tBid from isolated Bid. Contrary to rBid, isolated Bid was resistant to cleavage by caspase 3, yet was readily cleaved within the cytosolic milieu. Our data suggest that one or more distinct cellular mechanisms regulate Bid cleavage by caspases 8 and 3 in situ.  相似文献   

9.
Caspase cleavage enhances the apoptosis-inducing effects of BAD   总被引:12,自引:0,他引:12       下载免费PDF全文
The function of BAD, a proapoptotic member of the Bcl-2 family, is regulated primarily by rapid changes in phosphorylation that modulate its protein-protein interactions and subcellular localization. We show here that, during interleukin-3 (IL-3) deprivation-induced apoptosis of 32Dcl3 murine myeloid precursor cells, BAD is cleaved by a caspase(s) at its N terminus to generate a 15-kDa truncated protein. The 15-kDa truncated BAD is a more potent inducer of apoptosis than the wild-type protein, whereas a mutant BAD resistant to caspase 3 cleavage is a weak apoptosis inducer. Truncated BAD is detectable only in the mitochondrial fraction, interacts with BCL-X(L) at least as effectively as the wild-type protein, and is more potent than wild-type BAD in inducing cytochrome c release. Human BAD, which is 43 amino acids shorter than its mouse counterpart, is also cleaved by a caspase(s) upon exposure of Jurkat T cells to anti-FAS antibody, tumor necrosis factor alpha (TNF-alpha), or TRAIL. Moreover, a truncated form of human BAD lacking the N-terminal 28 amino acids is more potent than wild-type BAD in inducing apoptosis. The generation of truncated BAD was blocked by Bcl-2 in IL-3-deprived 32Dcl3 cells but not in Jurkat T cells exposed to anti-FAS antibody, TNF-alpha, or TRAIL. Together, these findings point to a novel and important role for BAD in maintaining the apoptotic phenotype in response to various apoptosis inducers.  相似文献   

10.
RET is a tyrosine kinase receptor involved in numerous cellular mechanisms including proliferation, neuronal navigation, migration, and differentiation upon binding with glial cell derived neurotrophic factor family ligands. RET is an atypical tyrosine kinase receptor containing four cadherin domains in its extracellular part. Furthermore, it has been shown to act as a dependence receptor. Such a receptor is active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage. However, different data suggest that RET is not always associated with the cell death/survival balance but rather provides positional information. We demonstrate here that caspase cleavage of RET is involved in the regulation of adhesion in sympathetic neurons. The cleavage of RET generates an N-terminal truncated fragment that functions as a cadherin accessory protein, modifying cadherin environment and potentiating cadherin-mediated cell aggregation. Thus, the caspase cleavage of RET generates two RET fragments: one intracellular domain that can trigger cell death in apoptotic permissive settings, and one membrane-anchored ectodomain with cadherin accessory activity. We propose that this latter function may notably be important for the adequate development of the superior cervical ganglion.  相似文献   

11.
The gamma-secretase complex, composed of presenilin, presenilin enhancer 2 (Pen-2), nicastrin, and Aph-1, catalyzes the final cleavage of amyloid precursor protein to generate the toxic amyloid beta protein, the major component of plaques in the brains of Alzheimer disease patients. To understand the in vivo function of Pen-2, we used morphant technology available in zebrafish and transiently knocked down the expression of endogenous Pen-2 by injecting the morpholino (MO) against Pen-2. Two truncated Pen-2 proteins lacking either the cytosolic or the C-terminal domain were expressed in MO-injected embryos. This deletion analysis demonstrated that the Pen-2 cytosolic loop is essential for protecting developing embryos from caspase-dependent apoptosis caused by the reduction of Pen-2. Twelve amino acids in the C terminus of Pen-2 were dispensable and could not rescue the Pen-2 knockdown-induced apoptotic phenotype. Surprisingly, double knockdown of Pen-2 and nuclear factor kappaB component p65 abrogated the single Pen-2 MO-induced caspase activation, indicating that a previously reported pro-apoptotic role of NF-kappaB in some cell types could be manifested in a whole animal and that knockdown of Pen-2 may trigger pro-apoptotic activation of NF-kappaB.  相似文献   

12.
The EGF family of receptors belongs to the tyrosine kinase receptor (TKR) family and plays an important role during embryonic and postnatal development and also in the progression of tumors. Her-2/neu/c-erbB-2, a member of the epidermal growth factor receptor family, can be cleaved into a soluble extra cellular domain (ECD) and a membrane-bound stub fragment. Her-2 ECD from a breast cancer cell line SKBR3 was immunopurified and analyzed with matrix-assisted laser desorption ionization (MALDI) and carboxyl terminal amino acid sequencing. A sequence within the juxtamembrane region (only 11 amino acid residues) PAEQR ASP was identified most likely as a primary site of cleavage, PA EQRASP as a minor site, that generate the ECD. The sites of cleavage are within the signature motif P/GX(5-7)P/G highly conserved in the EGF receptor family.  相似文献   

13.
RhoGDI2, a cytosolic regulator of Rho GTPase, is cleaved during apoptosis in a caspase-3 dependent fashion. By using 2D-gel electrophoresis, mass spectrometry and Western blotting we investigate in this paper the functional consequences of RhoGDI2 processing. We can show that loss of the N-terminal 19 amino acids results in a shift of the isoelectric point of the truncated RhoGDI2 (NΔ19) to a more basic value due to the removal of 9 acidic amino acids from the N-terminus, which may be responsible for enhanced retention of the N-terminally truncated protein within the nuclear compartment. Fusion of the p53 nuclear export signaling sequence MFRELNEALELK to NΔ19 (NΔ19NES) abolished its apoptosis promoting properties, while overexpression of NΔ19 significantly increased the susceptibility to apoptosis induction by the proteasome inhibitor PSI and by staurosporine. These results suggest that cleavage of RhoGDI2 by caspase-3 is not a functionally irrelevant bystander effect of caspase activation during apoptosis, but rather expedites progression of the apoptotic process.  相似文献   

14.
Death receptors of the Tumor Necrosis Factor (TNF) family form membrane-bound self-activating signaling complexes that initiate apoptosis through cleavage of proximal caspases including CASP8 and 10. Here we show that overexpression of the cytoplasmic domain (CD) of the DR4 TRAIL receptor (TNFRSF10A, TRAIL R1) in human breast, lung, and colon cancer cell lines, using an adenovirus vector (Ad-DR4-CD), leads to p53-independent apoptotic cell death involving cleavage of CASP8 and 10 proximally and CASP3, 6, and 7 distally. DR4-CD overexpression also leads to cleavage of poly(ADP-ribose) polymerase (PARP) and the DNA fragmentation factor (DFF45; ICAD). Importantly, normal lung fibroblasts are resistant to DR4-CD overexpression and show no evidence of PARP-, CASP8- or CASP3-cleavage despite similar levels of adenovirus-delivered DR4-CD protein as the cancer cells. These results suggest that DR4 may signal death through known caspases and that further studies are required to evaluate Ad-DR4-CD as a novel anti-cancer agent. Finally, we show that overexpression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (CDKN1A), or its N-terminal 91 amino acids containing cell cycle-inhibitory activity, inhibits DR4-CD-dependent proximal caspase cleavage. The blockage of initiator caspase activation provides a novel insight into how p21 may suppress apoptosis and enhance cell survival.  相似文献   

15.
Apoptotic protease-activating factor-1 (Apaf-1), a key regulator of the mitochondrial apoptosis pathway, consists of three functional regions: (i) an N-terminal caspase recruitment domain (CARD) that can bind to procaspase-9, (ii) a CED-4-like region enabling self-oligomerization, and (iii) a regulatory C terminus with WD-40 repeats masking the CARD and CED-4 region. During apoptosis, cytochrome c and dATP can relieve the inhibitory action of the WD-40 repeats and thus enable the oligomerization of Apaf-1 and the subsequent recruitment and activation of procaspase-9. Here, we report that different apoptotic stimuli induced the caspase-mediated cleavage of Apaf-1 into an 84-kDa fragment. The same Apaf-1 fragment was obtained in vitro by incubation of cell lysates with either cytochrome c/dATP or caspase-3 but not with caspase-6 or caspase-8. Apaf-1 was cleaved at the N terminus, leading to the removal of its CARD H1 helix. An additional cleavage site was located within the WD-40 repeats and enabled the oligomerization of p84 into a approximately 440-kDa Apaf-1 multimer even in the absence of cytochrome c. Due to the partial loss of its CARD, the p84 multimer was devoid of caspase-9 or other caspase activity. Thus, our data indicate that Apaf-1 cleavage causes the release of caspases from the apoptosome in the course of apoptosis.  相似文献   

16.
Pannexin 1 (PANX1) channels mediate release of ATP, a "find-me" signal that recruits macrophages to apoptotic cells; PANX1 activation during apoptosis requires caspase-mediated cleavage of PANX1 at its C terminus, but how the C terminus inhibits basal channel activity is not understood. Here, we provide evidence suggesting that the C terminus interacts with the human PANX1 (hPANX1) pore and that cleavage-mediated channel activation requires disruption of this inhibitory interaction. Basally silent hPANX1 channels localized on the cell membrane could be activated directly by protease-mediated C-terminal cleavage, without additional apoptotic effectors. By serial deletion, we identified a C-terminal region just distal to the caspase cleavage site that is required for inhibition of hPANX1; point mutations within this small region resulted in partial activation of full-length hPANX1. Consistent with the C-terminal tail functioning as a pore blocker, we found that truncated and constitutively active hPANX1 channels could be inhibited, in trans, by the isolated hPANX1 C terminus either in cells or when applied directly as a purified peptide in inside-out patch recordings. Furthermore, using a cysteine cross-linking approach, we showed that relief of inhibition following cleavage requires dissociation of the C terminus from the channel pore. Collectively, these data suggest a mechanism of hPANX1 channel regulation whereby the intact, pore-associated C terminus inhibits the full-length hPANX1 channel and a remarkably well placed caspase cleavage site allows effective removal of key inhibitory C-terminal determinants to activate hPANX1.  相似文献   

17.
We have demonstrated previously that full-length prostate-derived sterile 20-like kinase 1-alpha (PSK1-alpha) binds to microtubules via its C terminus and regulates their organization and stability independently of its catalytic activity. Here we have shown that apoptotic and microtubule-disrupting agents promote catalytic activation, C-terminal cleavage, and nuclear translocation of endogenous phosphoserine 181 PSK1-alpha and activated N-terminal PSK1-alpha-induced apoptosis. PSK1-alpha, unlike its novel isoform PSK1-beta, stimulated the c-Jun N-terminal kinase (JNK) pathway, and the nuclear localization of PSK1-alpha and its induction of cell contraction, membrane blebbing, and apoptotic body formation were dependent on JNK activity. PSK1-alpha was also a caspase substrate, and the broad spectrum caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone or mutation of a putative caspase recognition motif ((916)DPGD(919)) blocked nuclear localization of PSK1-alpha and its induction of membrane blebs. Additional inhibition of caspase 9 was needed to prevent cell contraction. PSK1-alpha is therefore a bifunctional kinase that associates with microtubules, and JNK- and caspase-mediated removal of its C-terminal microtubule-binding domain permits nuclear translocation of the N-terminal region of PSK1-alpha and its induction of apoptosis.  相似文献   

18.
The Adhesion G protein-coupled receptor (GPCR) CD97/ADGRE5 is induced, upregulated, and/or biochemically modified in various malignancies, compared to the corresponding normal tissues. As tumor cells are generally more resistant to apoptosis, we here studied the ability of CD97 to regulate tumor cell survival under apoptotic conditions. Stable overexpression of wild-type CD97 reduced serum starvation- and staurosporine-induced intrinsic and tumor necrosis factor (TNF)/cycloheximide-induced extrinsic apoptosis, indicated by an increase in cell viability, a lower percentage of cells within the subG0/G1 phase, expressing annexin V, or having condensed nuclei, and a reduction of DNA laddering. Protection from cell death by CD97 was accompanied by an inhibition of caspase activation and modulation of anti- and pro-apoptotic members of the BCL-2 superfamily. shRNA-mediated knockdown of CD97 and, in part, truncation of the seven-span transmembrane (TM7) region of CD97 increased caspase-mediated apoptosis. Protection from apoptosis required not only the TM7 region but also cleavage of the receptor at its GPCR proteolysis site (GPS), whereas alternative splicing of its extracellular domain had no effect. Together, our data indicate a role of CD97 in tumor cell survival.  相似文献   

19.
We have cloned a novel human GCK family kinase that has been designated as MASK (Mst3 and SOK1-related kinase). MASK is widely expressed and encodes a protein of 416 amino acid residues, with an N-terminal kinase domain and a unique C-terminal region. Like other GCK-III subfamily kinases, MASK does not activate any mitogen-activated protein kinase pathways. Wild type MASK, but not a form lacking the C terminus, exhibits homophilic binding in the yeast two-hybrid system and in coimmunoprecipitation experiments. Additionally, deletion of this C-terminal region of MASK leads to an increased kinase activity toward itself as well as toward an exogenous substrate, myelin basic protein. A potential caspase 3 cleavage site (DESDS) is present in the C-terminal region of MASK, and we show that MASK is cleaved in vitro by caspase 3. Finally, wild type and C-terminally truncated forms of MASK can both induce apoptosis upon overexpression in mammalian cells that is abrogated by CrmA, suggesting involvement of MASK in the apoptotic machinery in mammalian cells.  相似文献   

20.
Cells undergoing p53-mediated apoptosis activate caspase 3-like activities, resulting in the cleavage of the MDM2 oncoprotein and other apoptotic substrates such as poly(ADP-ribose) polymerase. To investigate the mechanism of p53-mediated apoptosis and to determine whether cleavage of MDM2 has a potential role in regulating p53, we examined caspase activation and cleavage of MDM2 in a cell line undergoing p53-mediated growth arrest and delayed apoptosis. We found that in H1299 cells expressing a temperature-sensitive human p53, a distinct caspase activity specific for the MDM2 cleavage site DVPD is induced by p53 prior to the onset of apoptosis and loss of viability. This is accompanied by the cleavage of MDM2 but not the apoptotic substrate poly(ADP-ribose) polymerase. The cleaved MDM2 loses the ability to promote p53 degradation and may potentially function in a dominant-negative fashion to stabilize p53. These results suggest that p53 activation may induce a positive feedback effect by cleavage of MDM2 through a unique caspase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号