首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenology of Tree Species in Bolivian Dry Forests   总被引:2,自引:0,他引:2  
Phenological characteristics of 453 individuals representing 39 tree species were investigated in two dry forests of the Lomerío region, Department of Santa Cruz, Bolivia. The leaf, flower, and fruit production of canopy and sub–canopy forest tree species were recorded monthly over a two–year period. Most canopy species lost their leaves during the dry season, whereas nearly all sub–canopy species retained their leaves. Peak leaf fall for canopy trees coincided with the peak of the dry season in July and August. Flushing of new leaves was complete by November in the early rainy season. Flowering and fruiting were bimodal, with a major peak occurring at the end of the dry season (August–October) and a minor peak during the rainy season (January). Fruit development was sufficiently long in this forest that fruiting peaks actually tended to precede flowering peaks by one month. A scarcity of fruit was observed in May, corresponding to the end of the rainy season. With the exception of figs (Ficus), most species had fairly synchronous fruit production. Most canopy trees had small, wind dispersed seeds or fruits that matured during the latter part of the dry season, whereas many sub–canopy tree species produced larger animal– or gravity–dispersed fruits that matured during the peak of the rainy season. Most species produced fruit annually. Lomerio received less rainfall than other tropical dry forests in which phenological studies have been conducted, but rainfall can be plentiful during the dry season in association with the passage of Antarctic cold fronts. Still, phenological patterns in Bolivian dry forests appear to be similar to those of other Neotropical dry forests.  相似文献   

2.
The Annonaceae family presents alkaloids with ecological functions and pharmacological interest. This is the first study to evaluate if the application of plant growth regulators to seeds of this family alters the production of alkaloids over time from germination. This study was carried out in four sequential stages of Annona cacans Warm. development from the resumption of embryo during seed imbibition with the application of plant regulator GA4+7 + 6-Benzyladenine. The concentration of total alkaloids was quantified using the oxoaporphine alkaloid liriodenine as reference standard. In addition, the liriodenine concentration was measured and the profile evaluated by ultra-high-performance liquid chromatography (UHPLC). Results have shown that alkaloids are present in all phases and in all tissues, at higher concentrations in roots (up to 100 times). The proportion of total alkaloids and liriodenine was modified in response to the application of plant regulators. Roots doubled the content of alkaloids and liriodenine. In cotyledonary leaves, the amount of total alkaloids decreased; however, liriodenine remained unchanged. Our results have shown that the use of plant growth regulators based on gibberellins and cytokinins modified the production of alkaloids in tissues in a specific way.  相似文献   

3.
Although tree growth in southern African savannas is correlated with rainfall in the wet season, some studies have shown that tree growth is controlled more by rainfall in the dry season. If more rainfall occurred in the dry season in future climates, it would affect the growth of savanna trees, especially saplings that have shallower roots which limit access to subsoil water during the dry season when leaf flush and shoot extension occur. Recent paleobotanical evidence has revealed that there was relatively more precipitation in the dry season in eastern Africa in the Eocene than under the current climate. Saplings therefore can be expected to respond more to water addition during the dry season than mature trees that have more stored water and deeper roots that access subsoil water. Accordingly, I hypothesized that irrigation in the dry season should (i) advance the onset of the growing season, (ii) increase growth rates and (iii) alter the growth responses of saplings to climate factors. To test these hypotheses saplings of five savanna woody species were irrigated during the hot‐dry season at a site in central Zambia and their monthly and annual growth rates compared to those of conspecifics growing under control conditions. Although the responses among the species were variable, all irrigated saplings had significantly higher monthly and annual growth rates than control plants. In addition, dry season watering significantly altered the climatic determinants of sapling growth by either strengthening the role of the same climatic factors that were important under control conditions or displacing them altogether. In conclusion, more precipitation during the hot‐dry season is likely to have significant positive effects on sapling growth and consequently reduce the sapling‐tree transition periods and promote future tree population recruitment in some southern African savanna tree species.  相似文献   

4.
Woody community phenology was studied in the central lowveld, South Africa, over a twelve month period at three sites along a rainfall gradient, with both toplands and bottomlands sampled at each site. Each month, individual plants, in replicated samples, were scored into a number of categories describing their phenological state. Position on the rainfall gradient influenced: (1) onset and magnitude of leaf emergence, (2) onset and duration of mature leaves, and (3) the proportion of leafless trees. Generally, the moist site demonstrated earlier leaf growth than the intermediate or arid sites. Emergent and mature leaves were recorded earlier, and in the case of mature leaves, retained longer. Overall, there was a lower proportion of leafless trees during the dry season at the moist site, followed by the semi-arid site, followed by the arid site. Differences with respect to catenal position were evident for the proportion of trees in winter with mature leaves, and the proportion of trees with senescent leaves. Bottomlands had a greater proportion of trees with leaves during winter, but a lower proportion of trees recorded with senescent leaves. Both of these findings were a result of the greater proportion of evergreen species in bottomlands, as well as increased leaf retention by the deciduous species. Phenological activity of leaves was related to plant stem size. In particular, there was greater leaf retention during the dry period by small stems, relative to large stems.  相似文献   

5.
 研究了西双版纳热带季节雨林6种乔木幼树在林窗中的叶生长与叶虫食动态。6种幼树叶生长主要在雨季(5~10月),在旱季雾凉期(11~2月)叶停止生长。阳性树种旱季干热期(3~4月)开始叶生长,顶极树种至5月雨季初才开始叶生长。表明雾凉期低温抑制两类树种叶生长,干热期水分不足抑制顶极树种叶生长。叶生长同步性(每两个月的叶生长量变异系数C.V.)顺序为:望天树(Shorea chinensis,1.42)>金钩花(Pseuduvaria indochinensis,1.41)>八宝树(Duabanga grandiflora, 1.02)>云南石梓(Gmelina arborea,0.98)>团花树(Anthocephalus chinensis,0.84)和铁刀木(Cassia siamea,0.84)。旱季造成一些种类幼树出现落叶高峰,严重叶虫食也导致云南石梓在7~8月出现落叶高峰。叶虫食主要出现在雨季,团花树和云南石梓在干热期叶生长能减少昆虫取食,但此时铁刀木叶同步生长却不能降低食叶昆虫危害。6种幼树叶生长量年进程与叶虫食量年进程间存在正相关,其中望天树、金钩花、八宝树和团花树分别达到显著(p<0.05)或极显著(p<0.01)水平。望天树和金钩花在雨季初叶同步生长能减轻叶虫食。食叶昆虫偏爱取食幼叶,6种幼树平均幼叶的虫食量占总虫食量的72.9%,幼叶虫食速率平均为成熟叶的4.3倍。  相似文献   

6.
This study evaluated whether herbivorous insects can be expected to have particular adaptations to withstand the harsh dry season in tropical dry forests (TDFs). We specifically investigated a possible escape in space, with herbivorous insects moving to the few evergreen trees that occur in this ecosystem; and escape in time, with herbivores presenting an increased nocturnal rather than diurnal activity during the dry season. We determined the variation in the free-feeding herbivorous insects (sap-sucking and leaf chewing) between seasons (beginning and middle of both rainy and dry seasons), plant phenological groups (deciduous and evergreen trees) and diel period (diurnal and nocturnal) in a Brazilian TDF. We sampled a total of 5827 insect herbivores in 72 flight-interception traps. Contrary to our expectations, we found a greater herbivore diversity during the dry season, with low species overlap among seasons. In the dry season, evergreen trees supported greater richness and abundance of herbivores as compared to deciduous trees. Insects were also more active at night during the dry season, but no diel differences in insect abundance were detected during the rainy season. These results indicate that the strategies used by insect herbivores to withstand the severe climatic conditions of TDFs during the dry season include both small-scale escape in space and time, with evergreen trees playing a key role in maintaining resident insect herbivore populations in TDFs. Relatively more nocturnal activity during the dry season may be related to the avoidance of harsh climatic conditions during the day. We suggest that the few evergreen tree species occurring in the TDF landscape should be especially targeted for protection in this threatened ecosystem, given their importance for insect conservation.  相似文献   

7.
The phytochemical investigation of the leaves and branches of Annona coriacea Mart. (Annonaceae) led to the isolation and characterization of eight compounds: five isoquinoline-derived alkaloids, including pukateine (1), liriodenine (4), anonaine (5), obovanine (6), and norisocorydine (7); one terpene lactone known as loliolide (3); one benzoic acid derivative, 2-methoxybenzoic acid (2), and 3,4,5-trimethoxyphenol (8). All compounds, except liriodenine, are being described for the first time in the species A. coriacea, and their chemophenetics relationships were discussed. The structures were elucidated by extensive analyses of 1D and 2D NMR (COSY, HSQC, and HMBC) spectroscopy in combination with MS, and the data were compared with literature values. The NMR dataset of pukateine and obovanine was reviewed. Our results showed that A. coriacea is a typical species of the Annonaceae family and an important source of aporphine alkaloids with chemophenetic relationships with Xylopia, Duguetia, Guatteria, Artabotrys, and Goniothalamus genera.  相似文献   

8.
Phytochemical investigation of the leaves of Annona salzmannii and Annona vepretorum (Annonaceae) led to the identification of seven aporphine alkaloids, anonaine, asimilobine, norcorydine, lanuginosine, liriodenine, lysicamine and oxonantenine, as well as, 1,3,6,6-tetramethyl-5,6,7,8-tetrahydro-isoquinolin-8-one and vomifoliol. Liriodenine, anonaine, asimilobine and norcorydine were found in A. salzmannii, while liriodenine, oxonantenine, lanuginosine, lysicamine, vomifoliol and 1,3,6,6-tetramethyl-5,6,7,8-tetrahydro-isoquinolin-8-one were found in A. vepretorum. All these compounds are being described for the first time in the leaves of A. salzmannii and A. vepretorum. This is the first report of 1,3,6,6-tetramethyl-5,6,7,8-tetrahydro-isoquinolin-8-one in the Annonaceae. The NMR data for oxonantenine, lanuginosine and lysicamine were reviewed.  相似文献   

9.
10.
Annonaceae aporphine alkaloids, of which liriodenine is the most abundant, have not been extensively studied from a biological standpoint. The goal of this study was to investigate the role of liriodenine in antimicrobial defense during early developmental stages in Annona diversifolia. The fungi Rhizopus stolonifer and Aspergillus glaucus, which are responsible for seed deterioration, were isolated during imbibition, and their antifungal activity was determined by diffusion, macrodilution, and metabolic inhibition assays using purified liriodenine and alkaloid extracts obtained from embryos, radicles, and roots at early developmental stages. The presence of liriodenine in extracts was quantified by high-performance liquid chromatography. Purified liriodenine and alkaloidal extracts inhibited both fungi, and there was a positive relationship between extract activity and amount of liriodenine contained therein. The quantity of liriodenine present in extracts suggests its importance in controlling other phytopathogens.  相似文献   

11.
Variation in Cd accumulation between Nicotiana species but not varieties has been observed in seedlings grown in solution culture with moderate-to-low levels of Cd. Nicotiana tabacum has been characterized as a leaf and root accumulator while Nicotiana rustica is shown to be primarily a root accumulator, having about half the leaf Cd per gram dry weight of N. tabacum. This phenotype is retained in the mature N. rustica plant. To characterize these two species which differ in their modes of Cd accumulation, tissue Cd distribution, partitioning of metal in soluble and insoluble fractions and the contribution of soluble Cd-binding proteins (peptides) to total plant Cd was assessed using mature solution cultured plants. Metal accumulation was highest in the most mature leaves and in young roots. The preponderance of young roots in N. rustica may, in part, account for low leaf/high root Cd accumulation in this species. While Cd-binding peptides appear to be a principal form of Cd in leaves and roots of seedlings and these also occur in mature leaves, Cd is equally distributed between soluble (about 80% as Cd-binding peptide) and uncharacterized insoluble forms in mature plant roots.  相似文献   

12.
The seasonal savannas (cerrados) of Central Brazil are characterized by a large diversity of evergreen and deciduous trees, which do not show a clear differentiation in terms of active rooting depth. Irrespective of the depth of the root system, expansion of new foliage in deciduous species occurs at the end of the dry season. In this study, we examined a suite of leaf traits related to C assimilation, water and nutrients (N, P) in five deciduous and six evergreen trees that were among the dominant families of cerrado vegetation. Maximum CO2 assimilation on a mass basis (Amass) was significantly correlated with leaf N and P, and specific leaf area (SLA; leaf area per unit of leaf mass). The highest leaf concentrations of both nutrients were measured in the newly mature leaves of deciduous species at the end of the dry period. The differences in terms of leaf N and P between evergreen and deciduous species decreased during the wet season. Deciduous species also invested less in the production of non-photosynthetic leaf tissues and produced leaves with higher SLA and maintained higher water use efficiency. Thus, deciduous species compensated for their shorter leaf payback period by maintaining higher potential payback capacity (higher values of Amass) and lower leaf construction costs (higher SLA). Their short leafless period and the capacity to flush by the end of the dry season may also contribute to offset the longer payback period of evergreen species, although it may involve the higher cost of maintaining a deep-root system or a tight control of plant water balance in the shallow-rooted ones.  相似文献   

13.
According to data of long-term observation, the dynamics and the rhythms of the wet evergreen broad-leaved forest in respect of seed germination, seedling growth, growth laws, and phenological rhythms of the mature trees of constituent species were analyzed. The species numbers of the seeds, germinable seeds and germinated seeds of the forest in rainy season were larger than those in dry season. The growth rate of the seedlings was faster in rainy season as well indicating a season most favourable for the growth of seedlings. The growth of trees was a process of inter-specific competition, self-regulation and self-thinning. The long and indistinctive phenologieal phases of the mature trees differed from those short and distinctive phenological phases of the broad-leaved forests in the temperate. Its continuous flowering, fruiting and fruit-falling were similar to the phenological rhythms of seasonal rain forests in Xishuangbanna. However, leaf-shedding of the seasonal rain forests in Xishuangbanna, the evergreen broad-leaved forests and the temperate broad-leaved forests was in spring (February ~March), in Winter (November ~ December) and in autumn (September~October) respectively. Based on the characteristics in the phenological rhythms of the species and their responses to the climates, the three eeo-phenological types were divided as: 1. The warm temperate eeo-phenological type, whieh accounts for 82 % of the total species number (50); 2. The temperate ecophenological type, 12%; 3. The cool temperate eco-phenological type, 0. 6 %.  相似文献   

14.
Ralhan  P. K.  Khanna  R. K.  Singh  S. P.  Singh  J. S. 《Plant Ecology》1985,63(3):113-119
The phenology of 49 shrub species in five forest types occurring along an altitudinal gradient (350–2150 m) in Kumaun Himalaya has been studied. The evergreen leaf-exchanging taxa accounted for nearly half of the species, the remaining half was nearly equally divided between an evergreen continual leaf drop type and deciduous taxa. The percentage of species with lengthy leaf drop increased with elevation and finally leveled off. At each site the maximum leaf drop period coincided with the warm dry period. Percentage of species with multiple leaf flushing was low for all forests. The degree of extended leafing decreased with increasing elevation along which summer dryness also decreased. Earliest leaf initiation was observed for evergreen continual leaf drop species, followed by evergreen leaf-exchanging, and deciduous types.For each forest, two peaks of flowering activity occurred, one during the warm dry period and the other in the warm wet period. The percentage of species with multiple flowering increased with increasing elevation. Nearly half of the species bore fleshy fruits. The mature fruit retention period for different forests ranged from about 2–3 months.The proportion of deciduous species was similar in trees and shrubs; leaf drop was common during the summer season for trees, while it was common during the winter season for shrubs; the proportion of species with multiple leafings was greater and leaf initiation earlier in shrubs than trees; and generally shrubs showed two flowering peaks and trees only one.Nomenclature follows Osmaston (1926).Financial support from the Gaula Catchment Eco-development project and the Department of Science and Technology, Government of India, is gratefully acknowledged. We thank Dr. Y. P. S. Pangtey for his help in plant identification.  相似文献   

15.
This paper reports on the phenological patterns of figs in Budongo Forest, Uganda, and how it relates to chimpanzee food availability in different seasons. In addition, we analysed the dung of chimpanzees to understand the composition of fruits in their diet. The aim of our study was to assess Ficus phenology and how it affects chimpanzee diet. Fifteen species of figs were monitored for fruit (syconium) and leaf phenology between June 2000 and 2001. Ficus fruit production varied significantly between and within species, and also with tree trunk and crown diameters. Fig fruit production was asynchronous and individual fig trees produced crops from one to five times in a year. In addition to fruits, chimpanzees fed on young leaves of some Ficus species. Shedding of old Ficus leaves coincided with the dry season, followed by appearance of young leaves. The dry season in Budongo is a period of general fruit scarcity. The combination of fig fruits and young leaves make up the most important food in the diet of chimpanzees. From the chimpanzee dung, more than 78% of seeds comprised fig ‘seeds’ (nutlets) and the rest of the diaspores were from other tree species. Our findings suggest that chimpanzees disperse large number of diaspores in their dung, thereby serving as important agents of natural forest regeneration.  相似文献   

16.
Wildy  Dan T.  Pate  John S.  Sefcik  Lesley T. 《Plant and Soil》2004,262(1-2):111-128
This study compared mature Eucalyptus kochii subsp. plenissima trees in inner regions or edges of natural bushland to young trees belt-planted through cleared agricultural land as uncut saplings or regenerating coppice over 2.7 years at Kalannie, Western Australia (320 mm annual rainfall). We assessed the ability of the species to alter its gas exchange characteristics, leaf physical attributes, and water-use efficiency of foliar carbon assimilation (WUE i) or of total dry matter production (WUE DM). Stomatal conductance (g s) varied five-fold between treatment means, with coppices exhibiting greatest values and mature bush least. Photosynthetic rates followed this trend. Leaf photosynthetic capacity estimated by chlorophyll content varied 1.3-fold parallel with variations in leaf thickness, with coppices rating lowest and mature edge trees most highly. WUE i varied 1.5-fold between treatments and was greatest in mature inner-bush and edge trees. Leaf photosynthetic capacity and g s were both correlated with WUE i. Carbon isotope composition (δ13C values) of new shoot dry matter produced early in a seasonal flush were similar to those of root starch but when averaged over the whole season correlated well with WUE i and gas exchange characteristics of trees of each treatment. Coppices showed poorest WUE i and most negative shoot tip δ13C but their WUE DM was high. This discrepancy was suggested to relate to carbon allocation strategies in coppices favouring fast growth of replacement shoots but not of roots. Physiology of coppice growth of E. kochii is usefully geared towards both rapid and water-use efficient production of woody biomass in water limited environments.  相似文献   

17.
Annona purpurea grows in the areas of low elevation in deciduous forests of Mexico, those areas have marked rainy and dry seasons. This species produces more than 30 bioactive alkaloids that could have potential in the control of phytopathogens. This research provides data on the variation of the content and number of alkaloids during an annual cycle and the associated inhibitory potential of the compounds against three phytopathogenic fungi. For one year, alkaloidal extracts of stems and leaves were obtained every two months. The extract profiles were determined by gas chromatography with tandem mass spectrometry and their antifungal activity was examined in vitro. The alkaloids, annomontine and oxopurpureine, obtained from the roots and leaves, respectively, were also evaluated individually. The yields, profiles and activities of the extracts, as well as the abundance of annomontine and oxopurpureine in the extracts, were contrasted with the seasonality and phenological phases of the plant. The data indicate that the alkaloid content was higher at the height of the dry season. High yields also occurred during flowering. The strongest inhibitory effect was obtained from the root extracts during the last month of dry season. This finding seems to be explained by the higher chemodiversity of alkaloids in extracts from this season. Annomontine and oxopurpureine inhibited all three phytopathogens; however, they were not solely responsible for the activity of A. purpurea.  相似文献   

18.
王明  桑卫国 《生态科学》2020,39(1):164-175
根据2003-2014年气象数据和暖温带3种乔木(辽东栎、五角枫和核桃楸)和3种灌木(土庄绣线菊、毛叶丁香和六道木)的物候观测数据资料, 采用气候倾向率和回归分析等方法, 观察乔木和灌木物候变化特征的差异, 分析温度、降水以及乔木、灌木的物候变化趋势, 同时对气象因子与乔木和灌木物候期的相关关系进行研究。结果表明: ①研究期间, 北京东灵山平均气温呈不显著的上升趋势, 气候倾向率为0.200℃·10a–1, 春季(3–5月)和夏季(6-8月)温度显著上升; 降水量呈下降趋势, 平均减少71.630 mm·10a–1, 总体呈暖、干的趋势。②3种乔木的生长季长度都缩短, 辽东栎、五角枫和核桃楸平均生长季长度分别缩短50.70 d·10 a–1、29.83 d·10a–1和22.36 d·10a–1。3种灌木的生长季长度也都缩短, 土庄绣线菊、毛叶丁香和六道木的平均生长季长度分别缩短42.55 d·10a–1、42.76 d·10a–1和38.15 d·10a–1。乔木和灌木的物候变化趋势相同, 整体表现为春季物候推迟, 秋季物候提前, 生长季长度都缩短且生长季长度相差不大。乔木和灌木都表现出芽期推迟最明显, 每10年推迟达19天以上。③乔木和灌木各物候期与气温总体表现为负相关, 即气温升高, 物候期提前, 其相关性显示出夏季(6-8月)温度对植被物候期影响较大, 夏季温度与各物候期表现为正相关, 即夏季温度升高, 物候期推迟。同时乔木和灌木与总体降水没有明显的相关关系, 但秋季物候与不同时段降水表现不同的相关性, 由此可知夏季温度变化对木本植物春季物候(出芽期、展叶期和首花期)的影响更大, 而秋季物候(叶变色期和落叶期)受温度和降水共同影响。  相似文献   

19.
The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest–savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils.  相似文献   

20.
Reproductive phenology of 171 plant species belonging to 57 families of angiosperms was studied according to life-forms in four habitat types in a savanna-forest mosaic on the Venezuelan Central Plain. Flowering, unripe fruit, and mature fruit patterns were affected significantly according to life-forms and habitats respectively. Production of flowers, unripe fruits, and mature fruits showed marked seasonality for all habitats except for the forest. Flowering peaked during the rainy season, and fruiting peaked toward the end of the rainy season. The savanna and the disturbed area had similar proportions of species that flowered over the year. The percentage of species with unripe fruits produced throughout the year was more seasonal for the disturbed area than for the other habitats. Mature fruit patterns showed an increase during the late rainy season for the ecotone and savanna. A large number of herbaceous (annual and perennial) and liana species flowered during the wet season, and a smaller fraction flowered during the dry season; and trees, shrubs, and epiphytes increased flowering activity during the dry season. Unripe fruit patterns were similar to those of flowering for all life-forms, however, tree species were less seasonal. Mature fruit production by shrubs peaked in the period of maximum rainfall, while the peak for perennial herbs was in the late rainy season and the peak for annual herbs was during the transition between the rainy season and the dry season. The largest proportion of tree and liana species with ripe fruits occurred during the dry season. Differences among phenological patterns in habitats were caused mainly by life-forms and promote a wider distribution of reproductive events in habitats and overall community in the Venezuelan Central Plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号