首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We investigated sex‐ and year‐dependent variation in the temporal and spatial movement pattern of barn swallows Hirundo rustica during the non‐breeding period. Hundred and three individuals equipped with miniaturized light‐level geolocators at three different breeding areas in southern Switzerland and northern Italy provided data for the analysis. We identified a region 1000 km in radius centred in Cameroon as the main non‐breeding residence area of these three geographical populations. Five residence areas of males only were in southern Africa, south of 19°S. Most individuals occupied a single site during their stay south of the Sahara. The timing of migration broadly overlapped between sexes and all geographical breeding populations. Between the two study years there was a distinct difference of 5 to 10 d in departure dates from and arrival at the breeding sites. Remarkably, the period of residence in sub‐Saharan Africa was very similar (157 d) in the two study years, but their positions in the first year (2010–2011) were about 400 km more to the north than in the second (2011–2012). Independent of the year, individuals with sub‐Saharan residence areas further north and east had a shorter pre‐breeding migration and arrived earlier than those staying further south and west. In addition, birds breeding in southern Switzerland arrived at their breeding colony 7–10 d later than those breeding only 100 km south, in the Po river plain. Our study provides new information on the variance in migration phenology and the distribution of residence areas in sub‐Saharan Africa in relation to sex, population and year. It supports the usefulness of light‐level geolocators for the study of annual routines of large samples of small birds.  相似文献   

2.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

3.
Across their ranges, different populations of migratory species often use separate routes to migrate between breeding and non-breeding grounds. Recent changes in climate and land-use have led to breeding range expansions in many species but it is unclear whether these populations also establish new migratory routes, non-breeding sites and migration phenology. Thus, we compared the migration patterns of European Bee-eaters Merops apiaster from two established western (n = 5) and eastern (n = 6) breeding populations in Europe, with those from a newly founded northern population (n = 19). We aimed to relate the breeding populations to the two known non-breeding clusters in Africa, and to test for similarities of migration routes and timing between the old and new populations. Western Bee-eaters used the western flyway to destinations in West Africa; the eastern birds uniformly headed south to southern African non-breeding sites, confirming a complete separation in time and space between these long-established populations. The recently founded northern population, however, also used a western corridor, but crossed the Mediterranean further east than the western population and overwintered mainly in a new non-breeding area in southern Congo/northern Angola. The migration routes and the new non-breeding range overlapped only slightly with the western, but not with the eastern, population. In contrast, migration phenology appeared to differ between the western and both the northern and the eastern populations, with tracked birds from the western population migrating 2–4 weeks earlier. The northern population thus shares some spatial traits with western Bee-eaters, but similar phenology only with eastern population. This divergence highlights the adjustments in the timing of migration to local environmental conditions in newly founded populations, and a parallel establishment of new breeding and non-breeding sites.  相似文献   

4.
Migratory connectivity describes to which degree different breeding populations have distinct (non‐overlapping) non‐breeding sites. Uncovering the level of migratory connectivity is crucial for effective conservation actions and for understanding of the evolution of local adaptations and migratory routes. Here we investigate migration patterns in a passerine bird, the great reed warbler Acrocephalus arundinaceus, over its wide Western Palearctic breeding range using geolocators from Spain, Sweden, Czech Republic, Bulgaria and Turkey. We found moderate migratory connectivity: a highly significant spatial structure in the connections between breeding and sub‐Saharan non‐breeding grounds, but at the same time a partial overlap between individual populations, particularly along the Gulf of Guinea where the majority of birds from the Spanish, Swedish and Czech populations spent their non‐breeding period. The post‐breeding migration routes were similar in direction and rather parallel for the five populations. Birds from Turkey showed the most distinctive migratory routes and sub‐Saharan non‐breeding range, with a post‐breeding migration to east Africa and, together with birds from Bulgaria, a previously unknown pre‐breeding migration over the Arabian Peninsula indicating counter‐clockwise loop migration. The distances between breeding and sub‐Saharan non‐breeding sites, as well as between first and final sub‐Saharan non‐breeding sites, differed among populations. However, the total speed of migration did not differ significantly between populations; neither during post‐breeding migration in autumn, nor pre‐breeding migration in spring. There was also no significant relationship between the total speed of migration and distance between breeding and non‐breeding sites (neither post‐ nor pre‐breeding) and, surprisingly, the total speed of migration generally did not differ significantly between post‐breeding and pre‐breeding migration. Future challenges include understanding whether non‐breeding environmental conditions may have influenced the differences in migratory patterns that we observed between populations, and to which extent non‐breeding habitat fluctuations and loss may affect population sizes of migrants.  相似文献   

5.
In the annual cycle of migratory birds, temporal and energetic constraints can lead to carry‐over effects, in which performance in one life history stage affects later stages. Bar‐tailed godwits Limosa lapponica baueri, which achieve remarkably high pre‐migratory fuel loads, undertake the longest non‐stop migratory flights yet recorded, and breed during brief high‐latitude summers, may be particularly vulnerable to persistent effects of disruptions to their rigidly‐timed annual routines. Using three years of non‐breeding data in New Zealand, we asked how arrival timing after a non‐stop flight from Alaska (>11 000 km) affected an individual godwit's performance in subsequent flight feather moult, contour feather moults, and migratory departure. Late arrival led to later wing moult, but godwits partially compensated for delayed moult initiation by increasing moult rate and decreasing the total duration of moult. Delays in arrival and wing moult up to 34–37 d had no apparent effect on an individual's migratory departure or extent of breeding plumage at departure, both of which were extraordinarily consistent between years. Thus, ‘errors’ in timing early in the non‐breeding season were essentially corrected in New Zealand prior to spring migration. Variation in migration timing also had no apparent effect on an individual's likelihood of returning the following season. The bar‐tailed godwits’ rigid maintenance of plumage and spring migration schedules, coupled with high annual survival, imply a surprising degree of flexibility to address unforeseen circumstances in the annual cycle.  相似文献   

6.
For migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre- and post-breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.  相似文献   

7.
Through new tracking techniques, data on timing and routes of migration in long‐distance migrant birds are accumulating. However, studies of the consistency of migration of the same individuals between years are still rare in small‐sized passerine birds. This type of information is important to understand decisions and migration abilities at the individual level, but also for life history theory, for understanding carry over effects between different annual cycle stages and for conservation. We analysed individual repeatability of migration between years in great reed warblers Acrocephalus arundinaceus; a medium‐sized European songbird migrating to sub‐Saharan Africa. In seven males, with geolocator data from 2–4 yr per bird, we found low to moderate (non significant) repeatability in timing of migration parameters (R ≤ 0.41), but high (and significant) repeatability for most spatial parameters, i.e. autumn route (R = 0.64) and stopover sites (R = 0.59–0.87) in Europe, and wintering sites (R = 0.77–0.99) in sub‐Saharan Africa. This pattern of high spatial but low temporal within‐individual repeatability of migration between years contrasts other tracking studies of migrating birds that generally have found consistency in timing but flexibility in routes. High spatial consistency of migration in the great reed warbler may be due to it being a specialist in wetlands, an unevenly distributed habitat, favouring a strategy of recurrence at previously visited sites. Low temporal repeatability may be caused by large between‐year variation in carry‐over effects from the breeding season, high flexibility in decision rules during migration or high sensitivity to environmental factors (weather, wind) during migration.  相似文献   

8.
Yellow Warblers (Setophaga petechia) are abundant breeding birds in North America, but their migratory and non‐breeding biology remain poorly understood. Studies where genetic and isotopic techniques were used identified parallel migration systems and longitudinal segregation among eastern‐ and western‐breeding populations of Yellow Warblers in North America, but these techniques have low spatial resolution. During the 2015 breeding season, we tagged male Yellow Warblers breeding in Maine (= 10) and Wisconsin (= 10) with light‐level geolocators to elucidate fine‐scale migratory connectivity within the eastern haplotype of this species and determine fall migration timing, routes, and wintering locations. We recovered seven of 20 geolocators (35%), including four in Maine and three in Wisconsin. The mean duration of fall migration was 49 d with departure from breeding areas in late August and early September and arrival in wintering areas in mid‐October. Most individuals crossed the Gulf of Mexico to Central America before completing the final eastward leg of their migration to northern South America. Yellow Warblers breeding in Maine wintered in north‐central Colombia, west of those breeding in Wisconsin that wintered in Venezuela and the border region between Brazil, Colombia, and Venezuela. Our results provide an example of crosswise migration, where the more easterly breeding population wintered farther west than the more westerly breeding population (and vice versa), a seldom‐documented phenomenon in birds. Our results confirm earlier work demonstrating that the eastern haplotype of northern Yellow Warblers winters in northern South America, and provide novel information about migratory strategies, timing, and wintering locations of birds from two different populations.  相似文献   

9.
Events in the life cycle of migrant birds are generally time‐constrained. Moult, together with breeding and migration, is the most energetically demanding annual cycle stages, but it is the only stage that can be scheduled at different times of the year. However, it is still not fully understood what factors determine this scheduling. We compare the timing of primary feather moult in relation to breeding and migration between two populations of Eurasian golden plover Pluvialis apricaria, the continental population breeding in Scandinavia and in N Russia that migrates to the Netherlands and southern Europe, and the Icelandic population that migrates mainly to Ireland and western UK. Moult was studied at the breeding grounds (N Sweden, N Russia, Iceland) and at stopover and wintering sites (S Sweden, the Netherlands). In both populations, primary moult overlapped with incubation and chick rearing, and females started on average 9 d later than males. Icelandic plovers overlapped moult with incubation to a larger extent and stayed in the breeding grounds until primary moult was completed. In contrast, continental birds only moulted the first 5–7 primaries at the breeding grounds and completed moult in stopover and wintering areas, such as S Sweden and the Netherlands. This overlap, although rare in birds, can be understood from an annual cycle perspective. Icelandic plovers presumably need to initiate moult early in the season to be able to complete it at the breeding grounds. The latter is not possible for continental plovers as their breeding season is much shorter due to a harsher climate. Additionally, for this population, moulting all the primaries at the stopover/wintering site is also not possible as too little time would remain to prepare for cold‐spell movements. We conclude that environmental conditions and migration strategy affect the annual scheduling of primary feather moult in the Eurasian golden plover.  相似文献   

10.
We examined how conditions prior to migration influenced migration performance of two breeding populations of black‐and‐white warblers Mniotilta varia by linking information on the migrant's winter habitat quality, measured via stable carbon isotopes, with information on their breeding destination, measured via stable hydrogen isotopes. The quality of winter habitat strongly influenced the timing of migration when we accounted for differential timing of migration between breeding populations. Among birds migrating to the same breeding destination, males and females arriving early to the stopover site originated from more mesic habitat than later arriving birds, suggesting that the benefits of occupying high‐quality mesic habitat during the winter positively influence the timing of migration. However, male warblers arriving early to the stopover site were not in better migratory condition than later arriving conspecifics that originated from poor‐quality xeric winter habitat, regardless of breeding destination. The two breeding populations stopover at the study site during different time periods, suggesting that the lower migratory condition of early birds is not a function of the time of season, but potentially a migrant's migration strategy. Strong selection pressures to arrive early on the breeding grounds to secure high‐quality breeding territories may drive males from high‐quality winter habitat to minimize time at the expense of energy. This migration strategy would result in a smaller margin of safety to buffer the effects of adverse weather or scarcity of food, increasing the risk of mortality. The migratory condition of females was the same regardless of the timing of migration or breeding destination, suggesting that females adopt a strategy that conserves energy during migration. This study fills an important gap in our understanding of the linkages between winter habitat quality and factors that influence the performance of migration, the phase of the annual cycle thought to be limiting most migratory bird populations.  相似文献   

11.
Declining numbers of Blackpoll Warblers (Setophaga striata) have been documented at long‐term migration monitoring sites as well as in breeding areas. However, the “loop migration” of Blackpoll Warblers makes it difficult to ascribe population change at migration monitoring sites to specific breeding populations. Individuals from all populations across the breeding range of Blackpoll Warblers concentrate in fall along the Atlantic coastline of eastern North America prior to initiating a transoceanic flight to wintering areas. In spring, Blackpoll Warblers return along a different route, moving north into the southeastern United States where birds from eastern and western breeding populations then diverge during migration to reach their respective breeding areas. To monitor breeding populations outside of breeding areas and identify factors potentially affecting those populations, we must be able to identify where birds captured during migration breed and map seasonal variation in population‐specific flyways. To “map” population‐specific migration movements of Blackpoll Warblers, we used feather deuterium (δ2Hf) values and a spatially explicit model to assign molt origins of 289 Blackpoll Warblers moving through sites in the Gulf of Maine (GOM) region and at three locations further west and south (northern Great Lakes area, Pennsylvania, and Florida). The assignment method was validated with feather samples from 35 birds captured during the breeding season at Churchill, Manitoba, Canada. As predicted, the spatial pattern of movement within and between seasons reflected “loop migration.” Blackpoll Warblers captured during fall migration in the GOM region included birds from across their breeding range, whereas birds captured during the spring were exclusively from northeastern populations. During fall migration, Blackpoll Warblers captured at two sites west of the GOM were from breeding areas further northwest than those from western Canada that were captured in the GOM. Blackpoll Warblers captured in eastern Florida during spring migration were assigned exclusively to breeding areas in the northeast, suggesting that eastern and western populations diverge soon after entering the United States. Finally, most Blackpoll Warblers sampled at Manomet Bird Observatory originated from breeding populations in Alaska and western Canada that have shown a similar (70–90%) decline over the same period. Our results, therefore, not only document the “loop migration” pattern of Blackpoll Warblers, but, by mapping patterns of connectivity between breeding and non‐breeding areas, may help target conservation efforts for breeding populations of Blackpoll Warblers where most needed.  相似文献   

12.
Individual migration pattern during non‐breeding season is still a black box in many migratory birds. However, knowledge on both individual level and population level in migration and overwintering is fundamental to understand the life cycle of these birds and the constraints affecting them. We showed in a highly aerial migrant, the common swift Apus apus, that repeatedly tracked birds breeding at one site in Germany used the same individual‐specific migration routes and wintering areas in subsequent years. In contrast, different individuals from the same breeding colony showed diverse movement patterns during non‐breeding season suggesting that several suitable areas for overwintering coexist. We found lower variation in timing of autumn and spring migration within than between individuals. Our findings provide first indication of individual consistency but between‐individual variation in migration pattern in a small non‐passerine bird revealed by geolocators. This supports that swifts have diverse but individual‐specific ‘step‐by‐step’ migration patterns revealing high flexibility through individual strategies.  相似文献   

13.
ABSTRACT Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998-Mar 2000) using capture-recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.  相似文献   

14.
The conservation of migratory birds requires internationally coordinated efforts that, in turn, demand an understanding of population dynamics and connectivity throughout a species' range. Whimbrels (Numenius phaeopus) are a widespread long‐distance migratory shorebird with two disparate North American breeding populations. Monitoring efforts suggest that at least one of these populations is declining, but the level of migratory connectivity linking the two populations to specific non‐breeding sites or identifiable conservation threats remains unclear. We deployed light‐level geolocators in 2012 to track the migration of Whimbrels breeding near Churchill, Manitoba, Canada. In 2013, we recovered 11 of these geolocators, yielding complete migration tracks for nine individuals. During southbound migration, six of the nine Whimbrels stopped at two staging sites on the mid‐Atlantic seaboard of the United States for an average of 22 days, whereas three individuals made nonstop flights of ~8000 km from Churchill to South America. All individuals subsequently spent the entire non‐breeding season along the northern coasts of Brazil and Suriname. On their way north, all birds stopped at the same two staging sites used during southbound migration. Individuals staged at these sites for an average of 34 days, significantly longer than during southbound migration, and all departed within a 5‐day period to undertake nonstop flights ranging from 2600 to 3100 km to the breeding grounds. These extended spring stopovers suggest that female Whimbrels likely employ a mixed breeding strategy, drawing on both endogenous and exogenous reserves to produce their eggs. Our results also demonstrate that this breeding population exhibits a high degree of connectivity among breeding, staging, and wintering sites. As with other long‐distance migratory shorebirds, conservation efforts for this population of Whimbrels must therefore focus on a small, but widely spaced, suite of sites that support a large proportion of the population.  相似文献   

15.
Understanding the annual cycle of migratory birds is imperative for evaluating the evolution of life‐history strategies and developing effective conservation strategies. Yet, we still know little about the annual cycle of migratory birds that breed at south‐temperate latitudes of South America. We aged, sexed, and determined the progression and intensity of body, remige, and rectrix molt of migratory Fork‐tailed Flycatchers (Tyrannus s. savana) at breeding sites in southern South America and at wintering sites in northern South America. Molt of both body and flight feathers occurred primarily during the winter. In early winter, a similar proportion of young and adult flycatchers molted remiges and rectrices, but remige molt intensity (number of remiges molting) was greater and primary molt progression (mean primary feather molting) more advanced in adults. In late winter, remige molt intensity and primary molt progression did not differ between age groups. We found no difference between males and females either in the proportion of individuals molting in winter or in the intensity or progress of remige molt. Our results suggest that the nominate subspecies of Fork‐tailed Flycatcher undergoes one complete, annual molt on the wintering grounds, and represents the first comprehensive evaluation of molt timing of a migratory New World flycatcher that overwinters in the tropics. Given that breeding, molt, and migration represent three key events in the annual cycle of migratory birds, knowledge of the timing of these events is the first step toward understanding the possible tradeoffs migratory birds face throughout the year.  相似文献   

16.
Knowledge about migratory connectivity, the degree to which individuals from the same breeding site migrate to the same wintering site, is essential to understand processes affecting populations of migrants throughout the annual cycle. Here, we study the migration system of a long-distance migratory bird, the Montagu''s harrier Circus pygargus, by tracking individuals from different breeding populations throughout northern Europe. We identified three main migration routes towards wintering areas in sub-Saharan Africa. Wintering areas and migration routes of different breeding populations overlapped, a pattern best described by ‘weak (diffuse) connectivity’. Migratory performance, i.e. timing, duration, distance and speed of migration, was surprisingly similar for the three routes despite differences in habitat characteristics. This study provides, to our knowledge, a first comprehensive overview of the migration system of a Palaearctic-African long-distance migrant. We emphasize the importance of spatial scale (e.g. distances between breeding populations) in defining patterns of connectivity and suggest that knowledge about fundamental aspects determining distribution patterns, such as the among-individual variation in mean migration directions, is required to ultimately understand migratory connectivity. Furthermore, we stress that for conservation purposes it is pivotal to consider wintering areas as well as migration routes and in particular stopover sites.  相似文献   

17.
18.
Detailed knowledge of migratory connectivity can facilitate effective conservation of Neotropical migrants by helping biologists understand where and when populations may be most limited. We studied the migratory behavior and non‐breeding distribution of two closely related species of conservation concern, the Golden‐winged Warbler (Vermivora chrysoptera) and Blue‐winged Warbler (Vermivora cyanoptera). Although both species have undergone dynamic range shifts and population changes attributed to habitat loss and social interactions promoting competition and hybridization, full life‐cycle conservation planning has been limited by a lack of information about their non‐breeding ecology. Because recent work has demonstrated that the two species are nearly identical genetically, we predicted that individuals from a single breeding population would have similar migratory timing and overwintering locations. In 2015, we placed light‐level geolocators on 25 males of both species and hybrids in an area of breeding sympatry at the Fort Drum Military Installation in Jefferson and Lewis counties, New York. Despite extreme genetic similarity, non‐breeding locations and duration of migration differed among genotypes. Golden‐winged Warblers (N = 2) overwintered > 1900 km southeast of the nearest Blue‐winged Warbler (N = 3) and spent nearly twice as many days in migration; hybrids (N = 2) had intermediate wintering distributions and migratory timing. Spring migration departure dates were staggered based on distance from the breeding area, and all birds arrived at the breeding site within 8 days of each other. Our results show that Golden‐winged Warblers and Blue‐winged Warblers in our study area retain species‐specific non‐breeding locations despite extreme genetic similarity, and suggest that non‐breeding locations and migratory timing vary along a genetic gradient. If the migratory period is limiting for these species, our results also suggest that Golden‐winged Warblers in our study population may be more vulnerable to population decline than Blue‐winged Warblers because they spend almost twice as many days migrating.  相似文献   

19.
Several populations of long-distance migratory birds are currently suffering steep demographic declines. The identification of the causes of such declines is difficult because population changes may be driven by events occurring in distant geographical areas during different phases of the annual life-cycle of migrants. Furthermore, wintering areas and migration routes of populations of small-sized species are still largely unknown, with few exceptions. In this paper we identified the critical phases of the annual life-cycle that most influence the population dynamics of a small passerine, the Barn Swallow Hirundo rustica. We used information on temporal dynamics of a population breeding in Northern Italy, whose wintering range and timing of migration have been recently described by miniaturised tracking dataloggers. Our results indicated that primary productivity in the wintering grounds in the month when most individuals arrive from autumn migration and primary productivity in an area that is probably a stopover site during spring migration, influenced population dynamics more than habitat conditions at the breeding grounds. By using annual variation in primary productivity at the wintering grounds and stopover sites as predictors, we replicated the observed interannual population changes with great accuracy. However, the steep decline recently suffered by the population could be replicated only by including a constant annual decline in the model, suggesting that changes in primary productivity only predicted the interannual variation around the long-term trend. Our study therefore suggests the existence of critical periods during wintering and migration that may have large impact on population fluctuations of migrant birds.  相似文献   

20.
Higher temperatures resulting from climate change have led to predictions that the duration of the breeding season of many temperate bird species may be changing. However, the extent to which breeding seasons can be altered will also depend on the degree of flexibility in processes occurring at other points in the annual cycle. In particular, plasticity in the timing of post‐breeding moult (PBM) could facilitate changes in the timing of key events throughout the annual cycle, but little is known about the level of within‐ and between‐species plasticity in PBM. As part of the British Trust for Ornithology (BTO) Ringing Scheme, many ringers routinely record moult scores of flight feathers, and these can be used to provide information on the annual progression of PBM for a range of species. Here we use ringing data to investigate patterns of PBM in 15 passerines, as well as data from the BTO Nest Record Scheme to relate these differences to the timing of breeding of these species across the UK. We find considerable variation in both the mean start (19 May–29 July) and duration (66–111 days) of PBM between species, but find no evidence that species starting PBM later in the season complete it any faster. However, there is considerable within‐species variation in PBM, particularly for multi‐brooded species; PBM starts later and is completed in less time when the duration of the breeding season (difference between first and last nests) is longer. This implies that a later end to breeding can be compensated for by faster PBM, and that advances in breeding could lead to earlier and slower PBM. Our findings suggest that adaptation of PBM in response to climate‐mediated changes in the timing and duration of the breeding season is possible. However, the requirement to complete PBM prior to migration or the onset of winter might constrain the extent to which breeding seasons can lengthen, especially for later nesting species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号