首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The Saccharomyces cerevisiae F(1)F(0)-ATP synthase peripheral stalk is composed of the OSCP, h, d, and b subunits. The b subunit has two membrane-spanning domains and a large hydrophilic domain that extends along one side of the enzyme to the top of F(1). In contrast, the Escherichia coli peripheral stalk has two identical b subunits, and subunits with substantially altered lengths can be incorporated into a functional F(1)F(0)-ATP synthase. The differences in subunit structure between the eukaryotic and prokaryotic peripheral stalks raised a question about whether the two stalks have similar physical and functional properties. In the present work, the length of the S. cerevisiae b subunit has been manipulated to determine whether the F(1)F(0)-ATP synthase exhibited the same tolerances as in the bacterial enzyme. Plasmid shuffling was used for ectopic expression of altered b subunits in a strain carrying a chromosomal disruption of the ATP4 gene. Wild type growth phenotypes were observed for insertions of up to 11 and a deletion of four amino acids on a nonfermentable carbon source. In mitochondria-enriched fractions, abundant ATP hydrolysis activity was seen for the insertion mutants. ATPase activity was largely oligomycin-insensitive in these mitochondrial fractions. In addition, very poor complementation was seen in a mutant with an insertion of 14 amino acids. Lengthier deletions yielded a defective enzyme. The results suggest that although the eukaryotic peripheral stalk is near its minimum length, the b subunit can be extended a considerable distance.  相似文献   

2.
In Escherichia coli, a parallel homodimer of identical b subunits constitutes the peripheral stalk of F(1)F(0) ATP synthase. Although the two b subunits have long been viewed as a single functional unit, the asymmetric nature of the enzyme complex suggested that the functional roles of each b subunit should not necessarily be considered equivalent. Previous mutagenesis studies of the peripheral stalk suffered from the fact that mutations in the uncF(b) gene affected both of the b subunits. We developed a system to express and study F(1)F(0) ATP synthase complexes containing two different b subunits. Two mutations already known to inactivate the F(1)F(0) ATP synthase complex have been studied using this experimental system. An evolutionarily conserved arginine, b(Arg-36), was known to be crucial for F(1)F(0) ATP synthase function, and the last four C-terminal amino acids had been shown to be important for enzyme assembly. Experiments expressing one of the mutants with a wild type b subunit demonstrated the presence of heterodimers in F(1)F(0) ATP synthase complexes. Activity assays suggested that the heterodimeric F(1)F(0) complexes were functional. When the two defective b subunits were expressed together and in the absence of any wild type b subunit, an active F(1)F(0) ATP synthase complex was assembled. This mutual complementation between fully defective b subunits indicated that each of the two b subunits makes a unique contribution to the functions of the peripheral stalk, such that one mutant b subunit is making up for what the other is lacking.  相似文献   

3.
In Escherichia coli F(1)F(0) ATP synthase, the two b subunits dimerize forming the peripheral second stalk linking the membrane F(0) sector to F(1). Previously, we have demonstrated that the enzyme could accommodate relatively large deletions in the b subunits while retaining function (Sorgen, P. L., Caviston, T. L., Perry, R. C., and Cain, B. D. (1998) J. Biol. Chem. 273, 27873-27878). The manipulations of b subunit length have been extended by construction of insertion mutations into the uncF(b) gene adding amino acids to the second stalk. Mutants with insertions of seven amino acids were essentially identical to wild type strains, and mutants with insertions of up to 14 amino acids retained biologically significant levels of activity. Membranes prepared from these strains had readily detectable levels of F(1)F(0)-ATPase activity and proton pumping activity. However, the larger insertions resulted in decreasing levels of activity, and immunoblot analysis indicated that these reductions in activity correlated with reduced levels of b subunit in the membranes. Addition of 18 amino acids was sufficient to result in the loss of F(1)F(0) ATP synthase function. Assuming the predicted alpha-helical structure for this area of the b subunit, the 14-amino acid insertion would result in the addition of enough material to lengthen the b subunit by as much as 20 A. The results of both insertion and deletion experiments support a model in which the second stalk is a flexible feature of the enzyme rather than a rigid rod-like structure.  相似文献   

4.
The detailed membrane topography and neighboring polypeptides of subunit 8 in yeast mitochondrial ATP synthase have been determined using a combination of cysteine scanning mutagenesis and chemical modification. 46 single cysteine substitution mutants encompassing the length of the subunit 8 protein were constructed by site-directed mutagenesis. Expression of each cysteine variant in yeast lacking endogenous subunit 8 restored respiratory phenotype to cells and had little measurable effect on ATP hydrolase function. The exposure of each introduced cysteine residue to the aqueous environment was assessed in isolated mitochondria using the fluorescent thiol-modifying probe fluorescein 5-maleimide. The first 14 and last 13 amino acids of subunit 8 were accessible to fluorescein 5-maleimide in osmotically lysed mitochondria and are thus extrinsic to the lipid bilayer, indicating a 21-amino acid transmembrane span. The C-terminal region of subunit 8 was partially occluded by other ATP synthase subunits, especially in a small region surrounding Val-40 that was demonstrated to play an important role in maintaining the stability of the F(1)-F(0) interaction. Cross-linking using heterobifunctional reagents revealed the proximity of subunit 8 to subunits b, d, and f in the matrix and to subunits b, f, and 6 in the intermembrane space. A disulfide bridge was also formed between subunit 8(F7C) or (M10C) and residue Cys-23 of subunit 6, demonstrating a close interaction between these two hydrophobic membrane subunits and confirming the location of the N termini of each in the intermembrane space. We conclude that subunit 8 is an integral component of the stator stalk of yeast mitochondrial F(1)F(0)-ATP synthase.  相似文献   

5.
ATP synthase catalyses the formation of ATP from ADP and P(i) and is powered by the diffusion of protons throughout membranes down the proton electrochemical gradient. The protein consists of a water-soluble F(1) and a transmembrane F(0) proton transporter part. It was previously shown that the ring of membrane subunits rotates past a fixed subunit during catalytic cycle of the enzyme. However, many parameters of this movement are still unknown. In the present study the mutual protein movement in the membrane part of F(0)F(1)-ATP syntase has been analysed within the framework of rigid body mechanics. On the base of available experimental data it was shown that electrostatic interaction of two charged amino acids residues is able to supply quite enough energy for the rotation. The initial torque, which caused the rotation, was estimated as 3.7 pN nm and for this pattern the angular movement of c subunits complex could not physically have a period less than 10(-9)s. If membrane viscosity and elastic resistance were taken into account then the time of a whole turnover could rise up to 6.3 x 10(-3)s. It is remarkable that rotation will take place only under condition when the elasticity (Young's) module of the central stalk (gamma subunit and other minor subunits) is less than 5.0 x 10(7)N/m(2). Thus, for generally accepted structural parameters of ATP synthase, two-charge electrostatic interaction model does not permit rotation of the rotor if elastic properties of the central stalk are tougher than mentioned above. In order to explain the rotation under that condition one should either suppose a shorter distance between subunit a and c subunits complex or assume interaction of more than two charged amino acids residues.  相似文献   

6.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

7.
The atpA and atpB genes coding for the alpha and beta subunits, respectively, of membrane ATPase were cloned from a methanogen Methanosarcina barkeri, and the amino acid sequences of the two subunits were deduced from the nucleotide sequences. The methanogenic alpha (578 amino acid residues) and beta (459 amino acid residues) subunits were highly homologous to the large and small subunits, respectively, of vacuolar H+-ATPases; 52% of the residues of the methanogenic alpha subunit were identical with those of the large subunit of vacuolar enzyme of carrot or Neurospora crassa, respectively, and 59, 60, and 59% of the residues of the methanogenic beta subunit were identical with those of the small subunits of N. crassa, Arabidopsis thaliana, and Sacharomyces cerevisiae, respectively. The methanogenic subunits were also highly homologous to the corresponding subunits of Sulfolobus acidocaldarius ATPase. The methanogenic alpha and beta subunits showed 22 and 24% identities with the beta and the alpha subunits of Escherichia coli F1, respectively. Furthermore, important amino acid residues identified genetically in the E. coli enzyme were conserved in the methanogenic enzyme. This sequence conservation suggests that vacuolar, F1, methanogenic, and S. acidocaldarius ATPases were derived from a common ancestral enzyme.  相似文献   

8.
Previously identified mutations in subunits a and b of the F0 sector of the F1F0-ATPase from Escherichia coli are further characterized by isolating detergent-solubilized, partially purified F1F0 complexes from cells bearing these mutations. The composition of the various F1F0 complexes was judged by quantitating the amount of each subunit present in the detergent-solubilized preparations. The composition of the F0 sectors containing altered polypeptides was determined by quantitating the F0 subunits that were immunoprecipitated by antibodies directed against the F1 portion. In this way, the relative amounts of F0 subunits (a, b, c) which survived the isolation procedure bound to F1 were determined for each mutation. This analysis indicates that both missense mutations in subunit a (aser206----leu and ahis245----tyr) resulted in the isolation of F1F0 complexes with normal subunit composition. The nonsense mutation in subunit a (atyr235----end) resulted in isolation of a complex containing the b and c subunits. The bgly131----asp mutation in the b subunit results in an F0 complex which does not assemble or survive the isolation. The isolated F1F0 complex containing the mutation bgly9----asp in the b subunit was defective in two regards: first, a reduction in F1 content relative to F0 and second, the absence of the a subunit. Immunoprecipitations of this preparation demonstrated that F1 interacts with both c and mutant b subunits. A strain carrying the mutation, bgly9----asp, and the compensating suppressor mutation apro240----leu (previously shown to be partially unc+) yielded an F1F0 ++ complex that remained partially defective in F1 binding to F0 but normal in the subunit composition of the F0 sector. The assembly, structure, and function of the F1F0-ATPase is discussed.  相似文献   

9.
A strain of Escherichia coli which was derived from a gentamicin-resistant clinical isolate was found to be cross-resistant to neomycin and streptomycin. The molecular nature of the genetic defect was found to be an insertion of two GC base pairs in the uncG gene of the mutant. The insertion led to the production of a truncated gamma subunit of 247 amino acids in length instead of the 286 amino acids that are present in the normal gamma subunit. A plasmid which carried the ATP synthase genes from the mutant produced resistance to aminoglycoside antibiotics when it was introduced into a strain with a chromosomal deletion of the ATP synthase genes. Removal of the genes coding for the beta and epsilon subunits abolished antibiotic resistance coded by the mutant plasmid. The relationship between antibiotic resistance and the gamma subunit was investigated by testing the antibiotic resistance of plasmids carrying various combinations of unc genes. The presence of genes for the F0 portion of the ATP synthase in the presence or absence of genes for the gamma subunit was not sufficient to cause antibiotic resistance. alpha, beta, and truncated gamma subunits were detected on washed membranes of the mutant by immunoblotting. The first 247 amino acid residues of the gamma subunit may be sufficient to allow its association with other F1 subunits in such a way that the proton gate of F0 is held open by the mutant F1.  相似文献   

10.
11.
Purified F0 from Escherichia coli ATP synthase was labelled with N-(7-dimethylamino-4-methyl-coumarinyl)-maleimide (DACM), a hydrophobic reagent which forms a stable, strongly fluorescent adduct with SH groups. Sodium dodecyl sulfate gel electrophoresis clearly demonstrated that subunit b was exclusively labelled, most likely at Cys-21, the only cysteine residue in E. coli F0. The amount of two molecules of DACM bound per F0, which was calculated from the absorption spectrum at 380 nm, is in full agreement with the postulated stoichiometry of two copies of subunit b/F0 complex. Thus the label provides a useful tool for simply detecting subunit b in protein chemical studies. DACM-labelled F0 was incorporated into liposomes and assayed for H+ translocating activity and its capacity to bind purified F1. Whereas the initial rate of H+ uptake was inhibited about 40% the reconstitution of a dicyclohexylcarbodiimide-sensitive F1F0 ATPase activity was completely unaffected. In a second set of experiments we reconstituted an F0 complex from DACM-labelled purified subunit b and an ac complex. In contrast to the results obtained with intact, DACM-labelled F0, both H+ translocating activity and F1 binding capacity were greatly reduced. Our data indicate that cysteine-21, probably together with other amino acids, is involved in maintaining a proper interaction of the hydrophobic N-terminal region of subunit b with the ac complex. This interplay seems to be a prerequisite for at least the in vitro assembly of a functional F0 complex.  相似文献   

12.
ATP synthase from bovine mitochondria is a complex of 13 different polypeptides, whereas the Escherichia coli enzyme is simpler and contains eight subunits only. Two of the bovine subunits, b and d, which had not been characterized, have been isolated from the purified enzyme. Subunits with sizes corresponding to bovine subunits b and d are evident in preparations of the enzyme from mitochondria of other species. Partial protein sequences have been determined by direct methods. On the basis of some of this information, two oligonucleotide mixtures, 17 and 18 bases in length, have been synthesized and used as hybridization probes in the isolation of clones of the cognate cDNAs. The sequences of the two proteins have been deduced from their DNA sequences. Subunit b is 214 amino acid residues in length and has a free N terminus. Subunit d is 160 amino acid residues long. Its N-terminal alanine is blocked by an N-acetyl group, as demonstrated by fast atom bombardment mass spectrometry of N-terminal peptides. The sequence near the N terminus of the b subunit is made predominantly of hydrophobic residues, whereas the remainder of the protein is mainly hydrophilic. This N-terminal hydrophobic region may be folded into an alpha-helical structure spanning the lipid bilayer. In its distribution of hydrophobic residues, this protein resembles the b subunits of ATP synthase complexes in bacteria and chloroplasts. The b subunit in E. coli forms an important structural link between the extramembrane sector of the enzyme F1, and the intrinsic membrane domain, FO. It is proposed that the bovine mitochondrial subunit b serves a similar function. If this is so, the mitochondrial enzyme, as the chloroplast ATP synthase, contains equivalent subunits to all eight of those that constitute the E. coli enzyme. Subunit d has no extensive hydrophobic sequences, and is not apparently related to any subunit described in the simpler ATP synthases in bacteria and chloroplasts.  相似文献   

13.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Soluble guanylyl cyclase is a heterodimeric enzyme consisting of an alpha(1) and a beta(1) subunit and is an important target for endogenous nitric oxide and the guanylyl cyclase modulator YC-1. The activation of the enzyme by both substances is dependent on the presence of a prosthetic heme group. It has been unclear whether this prosthetic heme group is sandwiched between the alpha(1) and beta(1) subunits or whether it exclusively binds to the beta(1) subunit. Here we analyze progressive amino-terminal deletion mutants of the human alpha(1) subunit after co-expression with the human beta(1) subunit in the baculovirus/Sf9 system. Spectral, biochemical, and pharmacological analysis shows that the first 259 amino acids of the alpha(1) subunit can be deleted without loss of sensitivity to nitric oxide (NO) or YC-1 or loss of heme binding of the respective enzyme complex with the beta(1) subunit. This is in contrast to previous data indicating that NO sensitivity and a functional heme binding site requires full-length amino termini of bovine alpha(1) and beta(1) subunits. Further deletion of the first 364 amino acids of the alpha(1) subunit leads to an enzyme complex with preserved heme binding but loss of sensitivity to NO or YC-1 despite induction of the typical spectral shift by NO binding to the prosthetic heme group. We conclude that 1) the amino-terminal part of the alpha(1) subunit is not involved in heme binding and 2) amino acids 259-364 of the alpha(1) subunit represent an important functional domain for the transduction of the NO activation signal and likely represent the target for NO-sensitizing substances like YC-1.  相似文献   

15.
Four different sets of proteoliposomes were prepared from F0, subunit c, a complex of subunits a and c (ac complex) and an ac complex supplemented with subunit b. Only liposomes containing intact F0 or all subunits of F0 were active in proton translocation and F1 binding [Schneider, E. and Altendorf, K. (1985) EMBO J. 4, 515-518]. The conformation of subunit c in the different preparations was analyzed by labelling the proteoliposomes with the hydrophobic photoactivatable reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). Subsequent isolation and Edman degradation of this polypeptide revealed distinct radioactive labelling patterns over the entire amino acid sequence. In the F0 complex and in the ac complex subunit c retains a labelling pattern which is related to that found in TID-labelled membrane vesicles of Escherichia coli [Hoppe et al. (1984) Biochemistry 23, 5610-5616]. In the absence of subunit a, considerably more and different amino acid residues of subunit c are modified. The labelling data are discussed in relation to structural aspects of F0 and functional properties of proteoliposomes reconstituted with F0 or individual subunits.  相似文献   

16.
In order to identify the subunits constituting the rat liver F0F1-ATP synthase, the complex prepared by selective extraction from the mitochondrial membranes with a detergent followed by purification on a sucrose gradient has been compared to that obtained by immunoprecipitation with an anti-F1 serum. The subunits present in both preparations that are assumed to be authentic components of the complex have been identified. The results show that the total rat liver F0F1-ATP synthase contains at least 13 different proteins, seven of which can be attributed to F0. The following F0 subunits have been identified: the subunit b (migrating as a 24 kDa band in SDS-PAGE), the oligomycin-sensitivity-conferring protein (20 kDa), and F6 (9 kDa) that have N-terminal sequences homologous to the beef-heart ones; the mtDNA encoded subunits 6 (20 kDa) and 8 (less than 7 kDa) that can be synthesized in isolated mitochondria; an additional 20 kDa protein that could be equivalent to the beef heart subunit d.  相似文献   

17.
In mitochondria, the hydrolytic activity of ATP synthase is prevented by an inhibitor protein, IF1. The active bovine protein (84 amino acids) is an alpha-helical dimer with monomers associated via an antiparallel alpha-helical coiled coil composed of residues 49-81. The N-terminal inhibitory sequences in the active dimer bind to two F1-ATPases in the presence of ATP. In the crystal structure of the F1-IF1 complex at 2.8 A resolution, residues 1-37 of IF1 bind in the alpha(DP)-beta(DP) interface of F1-ATPase, and also contact the central gamma subunit. The inhibitor opens the catalytic interface between the alpha(DP) and beta(DP) subunits relative to previous structures. The presence of ATP in the catalytic site of the beta(DP) subunit implies that the inhibited state represents a pre-hydrolysis step on the catalytic pathway of the enzyme.  相似文献   

18.
Acetolactate synthase small subunit encoding ilvN genes from the parental Streptomyces cinnamonensis strain and mutants resistant either to valine analogues or to 2-ketobutyrate were cloned and sequenced. The wild-type IlvN from S. cinnamonensis is composed of 175 amino acid residues and shows a high degree of similarity with the small subunits of other valine-sensitive bacterial acetolactate synthases. Changes in the sequence of ilvN conferring the insensitivity to valine in mutant strains were found in two distinct regions. Certain point mutations were located in the conserved domain near the N terminus, while others resulting in the same phenotype shortened the protein at V(104) or V(107). To confirm whether the described mutations were responsible for the changed biochemical properties of the native enzyme, the wild-type large subunit and the wild-type and mutant forms of the small one were expressed separately in E. coli and combined in vitro to reconstitute the active enzyme.  相似文献   

19.
In F1F0-ATP synthase, the subunit b2delta complex comprises the peripheral stator bound to subunit a in F0 and to the alpha3beta3 hexamer of F1. During catalysis, ATP turnover is coupled via an elastic rotary mechanism to proton translocation. Thus, the stator has to withstand the generated rotor torque, which implies tight interactions of the stator and rotor subunits. To quantitatively characterize the contribution of the F0 subunits to the binding of F1 within the assembled holoenzyme, the isolated subunit b dimer, ab2 subcomplex, and fully assembled F0 complex were specifically labeled with tetramethylrhodamine-5-maleimide at bCys64 and functionally reconstituted into liposomes. Proteoliposomes were then titrated with increasing amounts of Cy5-maleimide-labeled F1 (at gammaCys106 and analyzed by single-molecule fluorescence resonance energy transfer. The data revealed F1 dissociation constants of 2.7 nm for the binding of F0 and 9-10 nm for both the ab2 subcomplex and subunit b dimer. This indicates that both rotor and stator components of F0 contribute to F1 binding affinity in the assembled holoenzyme. The subunit c ring plays a crucial role in the binding of F1 to F0, whereas subunit a does not contribute significantly.  相似文献   

20.
Subunit h, a 92-residue-long, hydrophilic, acidic protein, is a component of the yeast mitochondrial F1Fo ATP synthase. This subunit, homologous to the mammalian factor F6, is essential for the correct assembly and/or functioning of this enzyme since yeast cells lacking it are not able to grow on nonfermentable carbon sources. Chemical cross-links between subunit h and subunit 4 have previously been shown, suggesting that subunit h is a component of the peripheral stalk of the F1Fo ATP synthase. The construction of cysteine-containing subunit h mutants and the use of bismaleimide reagents provided insights into its environment. Cross-links were obtained between subunit h and subunits alpha, f, d, and 4. These results and secondary structure predictions allowed us to build a structural model and to propose that this subunit occupies a central place in the peripheral stalk between the F1 sector and the membrane. In addition, subunit h was found to have a stoichiometry of one in the F1Fo ATP synthase complex and to be in close proximity to another subunit h belonging to another F1Fo ATP synthase in the inner mitochondrial membrane. Finally, functional characterization of mitochondria from mutants expressing different C-terminal shortened subunit h suggested that its C-terminal part is not essential for the assembly of a functional F1Fo ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号