首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
It has been shown previously in various organisms that the peroxin PEX14 is a component of a docking complex at the peroxisomal membrane, where it is involved in the import of matrix proteins into the organelle after their synthesis in the cytosol and recognition by a receptor. Here we present a characterization of the Trypanosoma brucei homologue of PEX14. It is shown that the protein is associated with glycosomes, the peroxisome-like organelles of trypanosomatids in which most glycolytic enzymes are compartmentalized. The N-terminal part of the protein binds specifically to TbPEX5, the cytosolic receptor for glycosomal matrix proteins with a peroxisome-targeting signal type 1 (PTS-1). TbPEX14 mRNA depletion by RNA interference results, in both bloodstream-form and procyclic, insect-stage T. brucei, in mislocalization of glycosomal proteins to the cytosol. The mislocalization was observed for different classes of matrix proteins: proteins with a C-terminal PTS-1, a N-terminal PTS-2 and a polypeptide internal I-PTS. The RNA interference experiments also showed that TbPEX14 is essential for the survival of bloodstream-form and procyclic trypanosomes. These data indicate the protein's great potential as a target for selective trypanocidal drugs.  相似文献   

2.
The glycosomes of trypanosomatids are essential organelles that are evolutionarily related to peroxisomes of other eukaryotes. The peroxisomal RING proteins-PEX2, PEX10 and PEX12-comprise a network of integral membrane proteins that function in the matrix protein import cycle. Here, we describe PEX10 and PEX12 in Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi. We expressed GFP fusions of each T. brucei coding region in procyclic form T. brucei, where they localized to glycosomes and behaved as integral membrane proteins. Despite the weak transmembrane predictions for TbPEX12, protease protection assays demonstrated that both the N and C termini are cytosolic, similar to mammalian PEX12. GFP fusions of T. cruzi PEX10 and L. major PEX12 also localized to glycosomes in T. brucei indicating that glycosomal membrane protein targeting is conserved across trypanosomatids.  相似文献   

3.
Glycosomes are peroxisome-like organelles essential for trypanosomatid parasites. Glycosome biogenesis is mediated by proteins called “peroxins,” which are considered to be promising drug targets in pathogenic Trypanosomatidae. The first step during protein translocation across the glycosomal membrane of peroxisomal targeting signal 1 (PTS1)-harboring proteins is signal recognition by the cytosolic receptor peroxin 5 (PEX5). The C-terminal PTS1 motifs interact with the PTS1 binding domain (P1BD) of PEX5, which is made up of seven tetratricopeptide repeats. Obtaining diffraction-quality crystals of the P1BD of Trypanosoma brucei PEX5 (TbPEX5) required surface entropy reduction mutagenesis. Each of the seven tetratricopeptide repeats appears to have a residue in the αL conformation in the loop connecting helices A and B. Five crystal structures of the P1BD of TbPEX5 were determined, each in complex with a hepta- or decapeptide corresponding to a natural or nonnatural PTS1 sequence. The PTS1 peptides are bound between the two subdomains of the P1BD. These structures indicate precise recognition of the C-terminal Leu of the PTS1 motif and important interactions between the PTS1 peptide main chain and up to five invariant Asn side chains of PEX5. The TbPEX5 structures reported here reveal a unique hydrophobic pocket in the subdomain interface that might be explored to obtain compounds that prevent relative motions of the subdomains and interfere selectively with PTS1 motif binding or release in trypanosomatids, and would therefore disrupt glycosome biogenesis and prevent parasite growth.  相似文献   

4.
Choe J  Moyersoen J  Roach C  Carter TL  Fan E  Michels PA  Hol WG 《Biochemistry》2003,42(37):10915-10922
Glycosome biogenesis in trypanosomatids occurs via a process that is homologous to peroxisome biogenesis in other eukaryotes. Glycosomal matrix proteins are synthesized in the cytosol and imported posttranslationally. The import process involves a series of protein-protein interactions starting by recognition of glycosomal matrix proteins by a receptor in the cytosol. Most proteins to be imported contain so-called PTS-1 or PTS-2 targeting sequences recognized by, respectively, the receptor proteins PEX5 and PEX7. PEX14, a protein associated with the peroxisomal membrane, has been identified as a component of the docking complex and a point of convergence of the PEX5- and PEX7-dependent import pathways. In this paper, the strength of the interactions between Trypanosoma brucei PEX14 and PEX5 was studied by a fluorescence assay, using (i) a panel of N-terminal regions of TbPEX14 protein variants and (ii) a series of different peptides derived from TbPEX5, each containing one of the three WXXXF/Y motifs present in this receptor protein. On the PEX14 side, the N-terminal region of TbPEX14 including residues 1-84 appeared to be responsible for TbPEX5 binding. The results from PEX14 mutants identified specific residues in the N-terminal region of TbPEX14 involved in PEX5 binding and showed that in particular hydrophobic residues F35 and F52 are critical. On the PEX5 side, 13-mer peptides incorporating the first or the third WXXXF/Y motif bind to PEX14 with an affinity in the nanomolar range. However, the second WXXXF/Y motif peptide did not show any detectable affinity. Studies using variants of second and third motif peptides suggest that the alpha-helical content of the peptides as well as the charge of a residue at position 9 in the motif may be important for PEX14 binding. Assays with 7-, 10-, 13-, and 16-mer third motif peptides showed that 16-mers and 13-mers have comparable binding affinity for PEX14, whereas 10-mers and 7-mers have about 10- and 100-fold lower affinity than the 16-mers, respectively. The low sequence identities of PEX14 and PEX5 between parasite and its human host, and the vital importance of proper glycosome biogenesis to the parasite, render these peroxins highly promising drug targets.  相似文献   

5.
Protozoan Kinetoplastida such as the pathogenic trypanosomes compartmentalize several important metabolic systems, including the glycolytic pathway, in peroxisome-like organelles designated glycosomes. Genes for three proteins involved in glycosome biogenesis of Trypanosoma brucei were identified. A preliminary analysis of these proteins, the peroxins PEX6, PEX10 and PEX12, was performed. Cellular depletion of these peroxins by RNA interference affected growth of both mammalian bloodstream-form and insect-form (procyclic) trypanosomes. The bloodstream forms, which rely entirely on glycolysis for their ATP supply, were more rapidly killed. Both by immunofluorescence studies of intact procyclic T. brucei cells and subcellular fractionation experiments involving differential permeabilization of plasma and organellar membranes it was shown that RNAi-dependent knockdown of the expression of each of these peroxins resulted in the partial mis-localization of different types of glycosomal matrix enzymes to the cytoplasm: proteins with consensus motifs such as the C-terminal type 1 peroxisomal targeting signal PTS1 or the N-terminal signal PTS2 and a protein for which the sorting information is present in a polypeptide-internal fragment not containing an identifiable consensus sequence.  相似文献   

6.
Trypanosomatids contain peroxisome-like organelles called glycosomes. Peroxisomal biogenesis involves a cytosolic receptor, PEX5, which, after its insertion into the organellar membrane, delivers proteins to the matrix. In yeasts and mammalian cells, transient PEX5 monoubiquitination at the membrane serves as the signal for its retrieval from the organelle for re-use. When its recycling is impaired, PEX5 is polyubiquitinated for proteasomal degradation. Stably monoubiquitinated TbPEX5 was detected in cytosolic fractions of Trypanosoma brucei, indicative for its role as physiological intermediate in receptor recycling. This modification's resistance to dithiothreitol suggests ubiquitin conjugation of a lysine residue. T. brucei PEX4, the functional homologue of the ubiquitin-conjugating (UBC) enzyme responsible for PEX5 monoubiquitination in yeast, was identified. It is associated with the cytosolic face of the glycosomal membrane, probably anchored by an identified putative TbPEX22. The involvement of TbPEX4 in TbPEX5 ubiquitination was demonstrated using procyclic ?PEX4 trypanosomes. Surprisingly, glycosomal matrix protein import was only mildly affected in this mutant. Since other UBC homologues were upregulated, it might be possible that these have partially rescued PEX4's function in PEX5 ubiquitination. In addition, the altered expression of UBCs, notably of candidates involved in cell-cycle control, could be responsible for observed morphological and motility defects of the ?PEX4 mutant.  相似文献   

7.
Pex14p is a member of the protein linkage map of Pex5p.   总被引:15,自引:3,他引:12       下载免费PDF全文
To identify members of the translocation machinery for peroxisomal proteins, we made use of the two-hybrid system to establish a protein linkage map centered around Pex5p from Saccharomyces cerevisiae, the receptor for the C-terminal peroxisomal targeting signal (PTS1). Among the five interaction partners identified, Pex14p was found to be induced under conditions allowing peroxisome proliferation. Deletion of the corresponding gene resulted in the inability of yeast cells to grow on oleate as well as the absence of peroxisomal structures. The PEX14 gene product of approximately 38 kDa was biochemically and ultrastructurally demonstrated to be a peroxisomal membrane protein, despite the lack of a membrane-spanning domain. This protein was shown to interact with itself, with Pex13p and with both PTS receptors, Pex5p and Pex7p, indicating a central function for the import of peroxisomal matrix proteins, either as a docking protein or as a releasing factor at the organellar membrane.  相似文献   

8.
Glycosomes are divergent peroxisomes found in trypanosomatid protozoa, including those that cause severe human diseases throughout much of the world. While peroxisomes are dispensable for both yeast (Saccharomyces cerevisiae and others) and mammalian cells in vitro, glycosomes are essential for trypanosomes and hence are viewed as a potential drug target. The import of proteins into the matrix of peroxisomes utilizes multiple peroxisomal membrane proteins which require the peroxin PEX19 for insertion into the peroxisomal membrane. In this report, we show that the specificity of peroxisomal membrane protein binding for Trypanosoma brucei PEX19 is very similar to those previously identified for human and yeast PEX19. Our studies show that trafficking is conserved across these distant phyla and that both a PEX19 binding site and a transmembrane domain are required for the insertion of two test proteins into the glycosomal membrane. However, in contrast to T. brucei PEX10 and PEX12, T. brucei PEX14 does not traffic to human peroxisomes, indicating that it is not recognized by the human PEX14 import mechanism.  相似文献   

9.
Matsumoto and colleagues recently identified PEX26 as the gene responsible for complementation group 8 of the peroxisome biogenesis disorders and showed that it encodes an integral peroxisomal membrane protein with a single C-terminal transmembrane domain and a cytosolic N-terminus that interacts with the PEX1/PEX6 heterodimer through direct binding to the latter. They proposed that PEX26 functions as the peroxisomal docking factor for the PEX1/PEX6 heterodimer. Here, we identify new PEX26 disease alleles, localize the PEX6-binding domain to the N-terminal half of the protein (aa 29-174), and show that, at the cellular level, PEX26 deficiency impairs peroxisomal import of both PTS1- and PTS2-targeted matrix proteins. Also, we find that PEX26 undergoes alternative splicing to produce several splice forms--including one, PEX26- delta ex5, that maintains frame and encodes an isoform lacking the transmembrane domain of full-length PEX26 (PEX26-FL). Despite its cytosolic location, PEX26- delta ex5 rescues peroxisome biogenesis in PEX26-deficient cells as efficiently as does PEX26-FL. To test our observation that a peroxisomal location is not required for PEX26 function, we made a chimeric protein (PEX26-Mito) with PEX26 as its N-terminus and the targeting segment of a mitochondrial outer membrane protein (OMP25) at its C-terminus. We found PEX26-Mito localized to the mitochondria and directed all detectable PEX6 and a fraction of PEX1 to this extraperoxisomal location; yet PEX26-Mito retains the full ability to rescue peroxisome biogenesis in PEX26-deficient cells. On the basis of these observations, we suggest that a peroxisomal localization of PEX26 and PEX6 is not required for their function and that the interaction of PEX6 with PEX1 is dynamic. This model predicts that, once activated in an extraperoxisomal location, PEX1 moves to the peroxisome and completes the function of the PEX1/6 heterodimer.  相似文献   

10.
Peroxisomal matrix protein transport relies on 2 cytosolic receptors, PEX5 and PEX7, which import peroxisomal targeting signal type 1 (PTS1) and PTS2-containing proteins, respectively. To better understand the transport mechanism of PEX7, we isolated PEX7 complexes using proteomics. We identified PEX5 as well as PTS1- and PTS2-containing proteins within the complex, thereby confirming the interaction between PEX5 and PEX7 during cargo transport that had been previously characterized by biochemical approaches. In addition, a chaperone T-complex and 2 small Rab GTPases were identified. We recently reported that the RabE1c is involved in the degradation of the PEX7 when abnormal PEX7 is accumulated on the peroxisomal membrane. This study expands our knowledge on the transport machinery via PEX7 by identifying both known and novel PEX7-interacting proteins and thus is helpful for further investigation of the regulation of the peroxisomal protein receptor during its translocation.  相似文献   

11.
Peroxins 5 and 7 are receptors for protein import into the peroxisomal matrix. We studied the involvement of these peroxins in the biogenesis of glycosomes in the protozoan parasite Trypanosoma brucei. Glycosomes are peroxisome-like organelles in which a major part of the glycolytic pathway is sequestered. We here report the characterization of the T. brucei homologue of PEX7 and provide several data strongly suggesting that it can bind to PEX5. Depletion of PEX5 or PEX7 by RNA interference had a severe effect on the growth of both the bloodstream-form of the parasite, that relies entirely on glycolysis for its ATP supply, and the procyclic form representative of the parasite living in the tsetse-fly midgut and in which also other metabolic pathways play a prominent role. The role of the two receptors in import of glycosomal matrix proteins with different types of peroxisome/glycosome-targeting signals (PTS) was analyzed by immunofluorescence and subcellular fractionation studies. Knocking down the expression of either receptor gene resulted, in procyclic cells, in the mislocalization of proteins with both a type 1 or 2 targeting motif (PTS1, PTS2) located at the C- and N-termini, respectively, and proteins with a sequence-internal signal (I-PTS) to the cytosol. Electron microscopy confirmed the apparent integrity of glycosomes in these procyclic cells. In bloodstream-form trypanosomes, PEX7 depletion seemed to affect only the subcellular distribution of PTS2-proteins. Western blot analysis suggested that, in both life-cycle stages of the trypanosome, the levels of both receptors are controlled in a coordinated fashion, by a mechanism that remains to be determined. The observation that both PEX5 and PEX7 are essential for the viability of the parasite indicates that the respective branches of the glycosome-import pathway in which each receptor acts might be interesting drug targets.  相似文献   

12.
Peroxisome biogenesis requires various complex processes including organelle division, enlargement and protein transport. We have been studying a number of Arabidopsis apm mutants that display aberrant peroxisome morphology. Two of these mutants, apm2 and apm4, showed green fluorescent protein fluorescence in the cytosol as well as in peroxisomes, indicating a decrease of efficiency of peroxisome targeting signal 1 (PTS1)-dependent protein transport to peroxisomes. Interestingly, both mutants were defective in PTS2-dependent protein transport. Plant growth was more inhibited in apm4 than apm2 mutants, apparently because protein transport was more severely decreased in apm4 than in apm2 mutants. APM2 and APM4 were found to encode proteins homologous to the peroxins PEX13 and PEX12, respectively, which are thought to be involved in transporting matrix proteins into peroxisomes in yeasts and mammals. We show that APM2/PEX13 and APM4/PEX12 are localized on peroxisomal membranes, and that APM2/PEX13 interacts with PEX7, a cytosolic PTS2 receptor. Additionally, a PTS1 receptor, PEX5, was found to stall on peroxisomal membranes in both mutants, suggesting that PEX12 and PEX13 are components that are involved in protein transport on peroxisomal membranes in higher plants. Proteins homologous to PEX12 and PEX13 have previously been found in Arabidopsis but it is not known whether they are involved in protein transport to peroxisomes. Our findings reveal that APM2/PEX13 and APM4/PEX12 are responsible for matrix protein import to peroxisomes in planta.  相似文献   

13.
Peroxisomal matrix protein import requires PEX12, an integral peroxisomal membrane protein with a zinc ring domain at its carboxy terminus. Mutations in human PEX12 result in Zellweger syndrome, a lethal neurological disorder, and implicate the zinc ring domain in PEX12 function. Using two-hybrid studies, blot overlay assays, and coimmunoprecipitation experiments, we observed that the zinc-binding domain of PEX12 binds both PEX5, the PTS1 receptor, and PEX10, another integral peroxisomal membrane protein required for peroxisomal matrix protein import. Furthermore, we identified a patient with a missense mutation in the PEX12 zinc-binding domain, S320F, and observed that this mutation reduces the binding of PEX12 to PEX5 and PEX10. Overexpression of either PEX5 or PEX10 can suppress this PEX12 mutation, providing genetic evidence that these interactions are biologically relevant. PEX5 is a predominantly cytoplasmic protein and previous PEX5-binding proteins have been implicated in docking PEX5 to the peroxisome surface. However, we find that loss of PEX12 or PEX10 does not reduce the association of PEX5 with peroxisomes, demonstrating that these peroxins are not required for receptor docking. These and other results lead us to propose that PEX12 and PEX10 play direct roles in peroxisomal matrix protein import downstream of the receptor docking event.  相似文献   

14.
We have isolated the Saccharomyces cerevisiae pex12-1 mutant from a screen to identify mutants defective in peroxisome biogenesis. The pex12delta deletion strain fails to import peroxisomal matrix proteins through both the PTS1 and PTS2 pathway. The PEX12 gene was cloned by functional complementation of the pex12-1 mutant strain and encodes a polypeptide of 399 amino acids. ScPex12p is orthologous to Pex12 proteins from other species and like its orthologues, S. cerevisiae Pex12p contains a degenerate RING finger domain of the C3HC4 type in its essential carboxy-terminus. Localization studies demonstrate that Pex12p is an integral peroxisomal membrane protein, with its NH2-terminus facing the peroxisomal lumen and with its COOH-terminus facing the cytosol. Pex12p-deficient cells retain particular structures that contain peroxisomal membrane proteins consistent with the existence of peroxisomal membrane remnants ("ghosts") in pex12A null mutant cells. This finding indicates that pex12delta cells are not impaired in peroxisomal membrane biogenesis. In immunoisolation experiments Pex12p was co-purified with the RING finger protein Pex10p, the PTS1 receptor Pex5p and the docking proteins for the PTS1 and the PTS2 receptor at the peroxisomal membrane, Pex13p and Pex14p. Furthermore, two-hybrid experiments suggest that the two RING finger domains are sufficient for the Pex10p-Pex12p interaction. Our results suggest that Pex12p is a component of the peroxisomal translocation machinery for matrix proteins.  相似文献   

15.
Newly synthesized peroxisomal matrix proteins are targeted to the organelle by PEX5. PEX5 has a dual role in this process. First, it acts as a soluble receptor recognizing these proteins in the cytosol. Subsequently, at the peroxisomal docking/translocation machinery, PEX5 promotes their translocation across the organelle membrane. Despite significant advances made in recent years, several aspects of this pathway remain unclear. Two important ones regard the formation and disruption of the PEX5-cargo protein interaction in the cytosol and at the docking/translocation machinery, respectively. Here, we provide data on the interaction of PEX5 with catalase, a homotetrameric enzyme in its native state. We found that PEX5 interacts with monomeric catalase yielding a stable protein complex; no such complex was detected with tetrameric catalase. Binding of PEX5 to monomeric catalase potently inhibits its tetramerization, a property that depends on domains present in both the N- and C-terminal halves of PEX5. Interestingly, the PEX5-catalase interaction is disrupted by the N-terminal domain of PEX14, a component of the docking/translocation machinery. One or two of the seven PEX14-binding diaromatic motifs present in the N-terminal half of PEX5 are probably involved in this phenomenon. These results suggest the following: 1) catalase domain(s) involved in the interaction with PEX5 are no longer accessible upon tetramerization of the enzyme; 2) the catalase-binding interface in PEX5 is not restricted to its C-terminal peroxisomal targeting sequence type 1-binding domain and also involves PEX5 N-terminal domain(s); and 3) PEX14 participates in the cargo protein release step.  相似文献   

16.
Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters. These polypeptides are so-called half-ABC transporters containing only one transmembrane domain and a single nucleotide-binding domain, like their homologues of mammalian and yeast peroxisomes. The glycosomal localization was shown by immunofluorescence microscopy of trypanosomes expressing fusion constructs of the transporters with Green Fluorescent Protein. By expression of fluorescent deletion constructs, the glycosome-targeting determinant of two transporters was mapped to different fragments of their respective primary structures. Interestingly, these fragments share a short sequence motif and contain adjacent to it one--but not the same--of the predicted six transmembrane segments of the transmembrane domain. We also identified the T. brucei homologue of peroxin PEX19, which is considered to act as a chaperonin and/or receptor for cytosolically synthesized proteins destined for insertion into the peroxisomal membrane. By using a bacterial two-hybrid system, it was shown that glycosomal ABC transporter fragments containing an organelle-targeting determinant can interact with both the trypanosomatid and human PEX19, despite their low overall sequence identity. Mutated forms of human PEX19 that lost interaction with human peroxisomal membrane proteins also did not bind anymore to the T. brucei glycosomal transporter. Moreover, fragments of the glycosomal transporter were targeted to the peroxisomal membrane when expressed in mammalian cells. Together these results indicate evolutionary conservation of the glycosomal/peroxisomal membrane protein import mechanism.  相似文献   

17.
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.  相似文献   

18.
The biogenesis of peroxisomes is mediated by peroxins (PEXs). PEX7 is a cytosolic receptor that imports peroxisomal targeting signal type 2 (PTS2)-containing proteins. Although PEX7 is important for protein transport, the mechanisms that mediate its function are unknown. In this study, we performed proteomic analysis to identify PEX7-binding proteins using transgenic Arabidopsis expressing green fluorescent protein (GFP)-tagged PEX7. Our analysis identified RabE1c, a small GTPase, as a PEX7 binding partner. In vivo analysis revealed that GTP-bound RabE1c binds to PEX7 and that a subset of RabE1c localizes to peroxisomes and interacts with PEX7 on the peroxisome membrane. Unlike endogenous PEX7, which is predominantly localized to the cytosol, GFP-PEX7 accumulates abnormally on the peroxisomal membrane and induces degradation of endogenous PEX7, concomitant with a reduction in import of PTS2-containing proteins and decreased peroxisomal β-oxidation activity. Thus, GFP-PEX7 on the peroxisomal membrane exerts a dominant negative effect. Mutation of RabE1c restored endogenous PEX7 protein expression and import of PTS2-containing proteins as well as peroxisomal β-oxidation activity. Treatment with proteasome inhibitors also restored endogenous PEX7 protein levels in GFP-PEX7-expressing seedlings. Based on these findings, we conclude that RabE1c binds PEX7 and facilitates PEX7 degradation in the presence of immobile GFP-PEX7 accumulated at the membrane.  相似文献   

19.
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and post-translationally targeted to the organelle by PEX5, the peroxisomal shuttling receptor. The pathway followed by PEX5 during this process is known with reasonable detail. After recognizing cargo proteins in the cytosol, the receptor interacts with the peroxisomal docking/translocation machinery, where it gets inserted; PEX5 is then monoubiquitinated, extracted back to the cytosol and, finally, deubiquitinated. However, despite this information, the exact step of this pathway where cargo proteins are translocated across the organelle membrane is still ill-defined. In this work, we used an in vitro import system to characterize the translocation mechanism of a matrix protein possessing a type 1 targeting signal. Our results suggest that translocation of proteins across the organelle membrane occurs downstream of a reversible docking step and upstream of the first cytosolic ATP-dependent step (i.e. before ubiquitination of PEX5), concomitantly with the insertion of the receptor into the docking/translocation machinery.  相似文献   

20.
PEX5, PEX7 and PEX2 are involved in the peroxisomal matrix protein import machinery. PEX5 and PEX7 are the receptors for the proteins harbouring, respectively, a PTS1 and a PTS2 peroxisomal targeting sequence and cycle between the cytoplasm and the peroxisome. PEX2 belongs to the RING-finger complex located in the peroxisomal membrane and acts in protein import downstream of PEX5 and PEX7; it is therefore required for the import of both PTS1 and PTS2 proteins. We have shown previously that PEX2 deficiency leads to an impairment of meiotic commitment in the filamentous fungus Podospora anserina. Here we report that both PEX5 and PEX7 receptors are dispensable for this commitment but are needed for normal sexual cycle. Data suggest also a new role of PEX2 and/or the RING-finger complex in addition to their role in PTS1 and PTS2 import. Strikingly, Deltapex5 and Deltapex7 single and double knockout strains analyses indicate that Deltapex7 acts as a partial suppressor of Deltapex5 life cycle deficiencies. Moreover, contrary to pex2 mutants, Deltapex5 and Deltapex7 show mitochondrial morphological abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号