首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal selective fluorescent peptide probes (dansyl-Cys-X-Gly-His-X-Gly-Glu-NH2, X = Pro or Gly) were developed by synthesizing peptides containing His, Cys, and Glu residues with Pro-Gly sequence to stabilize a turn structure and Gly-Gly sequence to adopt a random coil. The probe containing two Gly-Gly sequences exhibited marked selectivity only for Cu2+ over 13 metal ions including competitive transition and Group I and II metal ions under physiological buffer condition. In contrast, the probe containing double Pro-Gly sequences showed high selectivity for Zn2+. The peptide probe containing one Pro-Gly sequence exhibited selectivity for Zn2+ and Cu2+. CD spectra indicated that the secondary structure of the probes played an important role in the selective metal monitoring and a pre-organized secondary structure is not required for the selective detection of Cu2+ ion, but is required for the detection of Zn2+. We investigated and characterized the binding affinity, binding stoichiometry, reversibility, and pH sensitivity of the peptide probes.  相似文献   

2.
A universal label-free metal ion sensor design strategy was developed on the basis of a metal ion-specific DNA/RNA-cleaving DNAzyme and a G-quadruplex DNAzyme. In this strategy, the substrate strand of the DNA/RNA-cleaving DNAzyme was designed as an intramolecular stem-loop structure, and a G-rich sequence was caged in the double-stranded stem and could not form catalytically active G-quadruplex DNAzyme. The metal ion-triggered cleavage of the substrate strand could result in the release of the G-rich sequence and subsequent formation of a catalytic G-quadruplex DNAzyme. The self-blocking mechanism of the G-quadruplex DNAzyme provided the sensing system with a low background signal. The signal amplifications of both the DNA/RNA-cleaving DNAzyme and the G-quadruplex DNAzyme provided the sensing system with a high level of sensitivity. This sensor design strategy can be used for metal ions with reported specific DNA/RNA-cleaving DNAzymes and extended for metal ions with unique properties. As examples, dual DNAzymes-based Cu(2+), Pb(2+) and Hg(2+) sensors were designed. These "turn-on" colorimetric sensors can simply detect Cu(2+), Pb(2+) and Hg(2+) with high levels of sensitivity and selectivity, with detection limits of 4nM, 14nM and 4nM, respectively.  相似文献   

3.
We designed new fluorescent chemical sensors for Fe3+ ion detection, by conjugating amino acids as receptors into an anthracene fluorophore. The conjugates were synthesized in solid phase by Fmoc-chemistry. Fluorescence sensors containing Asp (1) and Glu (2) both had exclusive selectivity for Fe3+ in 100% aqueous solution and in a mixed organic–aqueous solvent system. Other metal ions did not interfere with the detection ability of the sensors for Fe3+. The sensors detect Fe3+ ions via a chelation-enhanced fluorescent quenching effect. The binding affinity, reversible monitoring, and pH sensitivity of the sensors were investigated. In addition, detection of fluoride ion among halide ions was done by a chemosensing ensemble method with 1Fe3+ and 2Fe3+ complexes.  相似文献   

4.
Fluorescent indicators for the real-time imaging of small molecules or metal ions in living cells are invaluable tools for understanding their physiological function. Genetically encoded sensors based on fluorescence resonance energy transfer (FRET) between fluorescent protein domains have important advantages over synthetic probes, but often suffer from a small ratiometric change. Here, we present a new design approach to obtain sensors with a large difference in emission ratio between the bound and unbound states. De novo Zn(II)-binding sites were introduced directly at the surface of both fluorescent domains of a chimera of enhanced cyan and yellow fluorescent protein, connected by a flexible peptide linker. The resulting sensor ZinCh displayed an almost fourfold change in fluorescence emission ratio upon binding of Zn(II). Besides a high affinity for Zn(II), the sensor was shown to be selective over other physiologically relevant metal ions. Its unique biphasic Zn(II)-binding behavior could be attributed to the presence of two distinct Zn(II)-binding sites and allowed ratiometric fluorescent detection of Zn(II) over a concentration range from 10 nM to 1 mM. Size-exclusion chromatography and fluorescence anisotropy were used to provide a detailed picture of the conformational changes associated with each Zn(II)-binding step. The high affinity for Zn(II) was mainly due to a high effective concentration of the fluorescent proteins and could be understood quantitatively by modeling the peptide linker between the fluorescent proteins as a random coil. The strategy of using chelating fluorescent protein chimeras to develop FRET sensor proteins with a high ratiometric change is expected to be more generally applicable, in particular for other metal ions and small molecules.  相似文献   

5.
The present study reports the development of a new 1,8‐naphthalimide‐based fluorescent sensor V for monitoring Cu(II) ions. The sensor exhibited pH independence over a wide pH range 2.52–9.58, and indicated its possible use for monitoring Cu(II) ions in a competitive pH medium. The sensor also showed high selectivity and sensitivity towards the Cu(II) ions over other competitive metal ions in DMSO–HEPES buffer (v/v, 1:1; pH 7.4) with a fluorescence ‘turn off’ mode of 79.79% observed. A Job plot indicated the formation of a 1:1 binding mode of the sensor with Cu(II) ions. The association constant and detection limit were 1.14 × 106 M–1 and 4.67 × 10–8 M, respectively. The fluorescence spectrum of the sensor was quenched due to the powerful paramagnetic nature of the Cu(II) ions. Potential application of this sensor was also demonstrated when determining Cu(II) ion levels in two different water samples.  相似文献   

6.
A novel ratiometric fluorescent peptidyl chemosensor (Dansyl-Cys-Pro-Gly-Cys-Trp-NH(2), D-P5) for metal ions detection has been synthesized via Fmoc solid-phase peptide synthesis. The chemosensor exhibited a high selectivity for Cd(2+) over other metal ions including competitive transition and Group I and II metal ions in neutral pH. The fluorescence emission intensity of D-P5 was significantly enhanced in the presence of Cd(2+) by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The binding stoichiometry, detection limit, binding affinity, reversibility and pH sensitivity of the sensor for Cd(2+) were investigated.  相似文献   

7.
Recently determined crystal structures of type II restriction endonucleases have produced a plethora of information on the basis for target site sequence selectivity. The positioning and role of metal ions in DNA recognition sites might reflect important properties of protein-DNA interaction. Although acidic and basic groups in the active sites can be identified, and in some cases divalent-metal binding sites delineated, a convincing picture clarifying the way in which the attacking hydroxide ion is generated, and the leaving group stabilized, has not been elucidated for any of the enzymes. We have examined the interatomic distances between metal ions and proposed key catalytic residues in the binding sites of seventeen type II restriction endonucleases whose crystal structures are documented in literature. The summary and critical evaluation of structural assignments and predictions made earlier have been useful to group these enzymes. All the enzymes used for this study have been categorized on the basis of the number of metal ions identified in their crystal structures. Among 17 experimentally characterized (not putative) type II REases, whose apparently full-length sequences are available in REBASE, we predict 8 (47%) to follow the single metal ion mechanism, 5 to follow the two metal ion mechanism, 2, the three metal ion mechanism, 1, the four metal ion mechanism and 1 the six metal ion mechanism.  相似文献   

8.
Based on highly selective and irreversible Hg2+-promoted desulfurization reaction, a new and simple phenanthroimidazole-type sensor was prepared and exhibited high selectivity towards Hg2+ ion over other metal ions, accompanied by transformation of a weakly fluorescent thioamide moiety (colorless) to a highly fluorescent amide one (blue), with a 136-fold increase in fluorescent intensity in aqueous solution with a pH span 2.57–9.12.  相似文献   

9.
Selective recognition of metal ions utilizing metal ion-imprinted polymers (MIIPs) received much importance in diverse fields owing to their high selectivity for the target metal ions. In the present study, a copper ion imprinted polymer was synthesized without an additional complexing ligand or complex with a broad aim to avoid the conventional extra metal ion complexing ligand during the synthesis of MIIP. The complete removal of the copper metal ion from the MIIP was confirmed by AAS and SEM–EDX. SEM image of the MIIP exhibited nano-patterns and it was also found to be entirely different from that of non-imprinted polymer and polymer with copper metal ions. BET surface area analysis revealed more surface area (47.96 m2/g) for the Cu(II)-MIIP than non-imprinted control polymer (41.43 m2/g). TGA result of polymer with copper metal ion indicated more char yield (18.41%) when compared to non-imprinted control polymer (8.3%) and Cu(II)-MIIP (less than 1%). FTIR study confirmed the complexation between Cu(II)-MIIP and Cu(II) metal ion through carbonyl oxygen of acryl amide. The Cu(II)-MIIP exhibited an imprinting efficiency of 2.0 and it was showing 8% interference from a mixture of Zn, Ni and Co ions. A potentiometric ion selective electrode devised with Cu(II)-MIIP showed more potential response for Cu(II) ion than that was fabricated from non-imprinted polymer.  相似文献   

10.
Carbonic anhydrases are archetypical zinc metalloenzymes and as such, they have been developed as the recognition element of a family of fluorescent indicators (sensors) to detect metal ions, particularly Zn2+ and Cu2+. Subtle modification of the structure of human carbonic anhydrase II isozyme (CAII) alters the selectivity, sensitivity, and response time for these sensors. Sensors using CAII variants coupled with zinc-dependent fluorescent ligands demonstrate picomolar sensitivity, unmatched selectivity, ratiometric fluorescence signal, and near diffusion-controlled response times. Recently, these sensors have been applied to measuring the readily exchangeable concentrations of zinc in the cytosol and nucleus of mammalian tissue culture cells and concentrations of free Cu2+ in seawater.  相似文献   

11.
The method provides an innovative dual functional sensors for mercury (II) ions and hydrogen peroxide. The addition of H(2)O(2) to the mixture of silver nanoparticles (AgNPs) and Hg(2+) induced color changes of the solution within several seconds even at 2.0 nM Hg(2+). Other metallic ions could not induce color change even at 10 μM. Of importance, this probe was not only successfully applied to detect Hg(2+), but also it could be used to sense H(2)O(2) at a concentration as low as 50 nM (by naked-eye). The outstanding sensitivity and selectivity property for Hg(2+) and H(2)O(2) resulted from the AgNPs mediated reduction of Hg(2+) to elementary Hg in the presence of H(2)O(2), causing the aggregation and colorimetric response of AgNPs. This sensitive and selective colorimetric assay opens up a fresh insight of development facile and fast detection methods for metal ions and biomolecules using the special catalytic reactivity of AgNPs.  相似文献   

12.
In this study, we report a new fluorogenic sensor based on fluorescence resonance energy transfer (FRET) for detection of heavy metal ions in aqueous solution. The method showed the advantage of being simple, highly sensitive and selective, and rapid. The donor (CdTe QDs) and acceptor (TAMRA or Cy5) are brought into close proximity to one another due to Hg(2+) and Ag(+) form strong and stable T-Hg(2+)-T complexes and C-Ag(+)-C complexes, which quenches the fluorescent intensity of CdTe QDs and enables the energy transfer from donor to acceptor. This sensor showed high sensitivity and selectivity when only one kind of ion (Ag(+) or Hg(2+)) exists. Furthermore, the assay can also simultaneously detect Ag(+) and Hg(2+) in water media with the limit of detection (LOD) of 2.5 and 1.8 nM, separately, which satisfactorily meets the sensitivity demands of Environmental Protection Agency (EPA) and World Health Organization (WHO). This assay also exhibits excellent selectivity toward Ag(+) and Hg(2+). Therefore, this method is of great practical and theoretical importance for detecting heavy metal ions in aqueous solution.  相似文献   

13.
An ‘off–on’ rhodamine‐based fluorescence probe for the selective detection of Cu(II) has been designed, exploiting the guest‐induced structure transform mechanism. This system shows a sharp Cu(II)‐selective fluorescence enhancement response in an aqueous system under physiological pH, and possesses high selectivity against a background of environmentally and biologically relevant metal ions. Under optimum conditions, the fluorescence intensity enhancement of this system is linearly proportional to the Cu(II) concentration from 50 nM to 6.0 μM with a detection limit of 29 nM. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
We recently reported that a computationally designed catalyst nicknamed AlleyCat facilitates C–H proton abstraction in Kemp elimination at neutral pH in a selective and calcium-dependent fashion by a factor of approximately 100,000 (Korendovych et al. in Proc. Natl. Acad. Sci. USA 108:6823, 2011). Kemp elimination produced a colored product that can be easily read out, thus making AlleyCat a catalytically amplified metal sensor for calcium. Here we report that metal-binding EF-hand motifs in AlleyCat could be redesigned to incorporate trivalent metal ions without significant loss of catalytic activity. Mutation of a single neutral residue at position 9 of each of the EF-hands to glutamate results in almost a two orders of magnitude improvement of selectivity for trivalent metal ions over calcium. Development of this new lanthanide-dependent switchable Kemp eliminase, named CuSeCat EE, provides the foundation for further selectivity improvement and broadening the scope of the repertoire of metals for sensing. A concerted effort in the design of switchable enzymes has many environmental, sensing, and metal ion tracking applications.  相似文献   

15.
Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems.  相似文献   

16.
In this study, a novel fluorescent chemosensor 1 based on chromone-3-carboxaldehyde Schiff base was synthesized and featured through nuclear magnetic resonance (NMR) and mass spectra. Spectroscopic investigation indicated that the fluorescent sensor showed high selectivity toward Zn2+ over other metal ions and that the detection limit of 1 could reach 10−7 M. These indicated that 1 acted as a highly selective and sensitive fluorescence chemosensor for Zn2+.  相似文献   

17.
Eiichi Kimura  Shin Aoki 《Biometals》2001,14(3-4):191-204
The biological role of the zinc(II) ion has been recognized in DNA and RNA synthesis, apoptosis, gene expression, or protein structure and function. Therefore, development of useful zinc(II) sensors has recently been attracting much interest. Chemistry for selective and efficient detection of trace Zn2+ is a central issue. Recently, various types of zinc-fluorophores are emerging, comprising bio-inspired aromatic sulfonamide derivatives, zinc-finger peptides attached to fluorescent dyes, or fluorophore-pendant macrocyclic polyamines. The chemical principles, properties and limitations of these Zn2+-fluorophores are discussed.  相似文献   

18.
Divalent metal ions play a critical role in the removal of N-terminal methionine from nascent proteins by methionine aminopeptidase (MetAP). Being an essential enzyme for bacteria, MetAP is an appealing target for the development of novel antibacterial drugs. Although purified enzyme can be activated by several divalent metal ions, the exact metal ion used by MetAP in cells is unknown. Many MetAP inhibitors are highly potent on purified enzyme, but they fail to show significant inhibition of bacterial growth. One possibility for the failure is a disparity of the metal used in activation of purified MetAP and the metal actually used by MetAP inside bacterial cells. Therefore, the challenge is to elucidate the physiologically relevant metal for MetAP and discover MetAP inhibitors that can effectively inhibit cellular MetAP. We have recently discovered MetAP inhibitors with selectivity toward different metalloforms of Escherichia coli MetAP, and with these unique inhibitors, we characterized their inhibition of MetAP enzyme activity in a cellular environment. We observed that only inhibitors that are selective for the Fe(II)-form of MetAP were potent in this assay. Further, we found that only these Fe(II)-form selective inhibitors showed significant inhibition of growth of five E. coli strains and two Bacillus strains. We confirmed their cellular target as MetAP by analysis of N-terminal processed and unprocessed recombinant glutathione S-transferase proteins. Therefore, we conclude that Fe(II) is the likely metal used by MetAP in E. coli and other bacterial cells.  相似文献   

19.
There has been an enormous demand for commercial label-free DNA sensors in a diverse range of fields including pre-emptive medicine, diagnostics, environmental monitoring, and food industry. Addressing the need for sensitive, selective and facile DNA sensors, we demonstrate a novel switch on/off sensor design that utilizes sandwich hybridization between photoluminescent anionic conjugated polyelectrolyte (CPE) bound captureprobe coated onto magnetic beads, target and the signaling probe. The hybridization-readout in our sensor was monitored by either fluorescence resonance energy transfer (FRET, switch-on) or superquenching (switch-off) depending on the type of signaling probe used. Moreover recent designs that utilize beads for sensing DNA have been limited towards using electrostatic interactions or intercalation of dyes to observe FRET. To our knowledge this is the first report of a switch on/off sensor utilizing either FRET or superquenching thus providing flexibility for future development of such rapid, facile and sensitive DNA sensors. The FRET-based sensor was investigated by optimizing the reaction parameters and selectivity. A low detection limit of 240 fmol in 2 mL of SSC buffer was achieved.  相似文献   

20.
A water-soluble 1,8-naphthalimide-based fluorescent chemosensor 1, bearing two acetic carboxylic moieties, exhibited high selectivity and sensitivity for recognition of Hg(2+) ion in water over other heavy and transition metal (HTM) ions with fluorescent enhancement. An increase in the fluorescent intensity at 562 nm was due to the formation of a 1:1 1-Hg(2+) inclusion complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号