首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acinetobacter baumannii causes a broad range of opportunistic infections in humans. Its success as an emerging pathogen is due to a combination of increasing antibiotic resistance, environmental persistence and adaptation to the human host. To date very little is known about the molecular basis of the latter. Here we demonstrate that A. baumannii can use phosphatidylcholine, an integral part of human cell membranes, as sole carbon and energy source. We report on the identification of three phospholipases belonging to the PLD superfamily. PLD1 and PLD2 appear restricted to the bacteria and display the general features of bacterial phospholipases D. They possess two PLDc_2 PFAM domains each encompassing the HxKx4Dx6GS/GGxN (HKD) motif necessary for forming the catalytic core. The third candidate, PLD3, is found in bacteria as well as in eukaryotes and harbours only one PLDc_2 PFAM domain and one conserved HKD motif, which however do not overlap. Employing a markerless mutagenesis system for A. baumannii ATCC 19606T, we generated a full set of PLD knock-out mutants. Galleria mellonella infection studies as well as invasion experiments using A549 human lung epithelial cells revealed that the three PLDs act in a concerted manner as virulence factors and are playing an important role in host cell invasion.  相似文献   

2.
Multidrug resistance (MDR) in Acinetobacter baumannii is increasingly reported and has become a significant public concern. The method responsible for the acquisition of resistance genes via integrons from the environment or intra-species in A. baumannii remains to be understood. This study was performed to investigate the transmission route of these integrons using a comparative analysis of published A. baumannii complete genomes. The phylogenetic analysis of A. baumannii type 1 integrases (IntI1) showed that the integrons could be transferred across the two evolutionary lineages, the international clone I (IC I) and clone II (IC II) strains. In addition, the integrons in A. baumannii strains were mainly responsible for the transfer of resistance genes for two types of long-term usage antibiotics and antiseptics, such as aminoglycosides, chloramphenicol and the quaternary-ammonium-compound family. The in silico comparative analysis of known integron integrases revealed that the intI genes were phylogenetically related among A. baumannii strains and some microorganisms living in a sediment community, implicating that the integrons of A. baumannii might have originated from those microorganisms belonging to the β-preoteobacterial class in the sediment environment. The data suggest that the gain of class 1 integrons in A. baumannii strains may have started before the antibiotic era. This report shows that the origins of A. baumannii class 1 integrons may be the soil environment and that the resistance genes included in integrons are horizontally transferred across all the A. baumannii genomes, including IC I and IC II.  相似文献   

3.
4.

Background

Acinetobacter baumannii is an emerging bacterial pathogen that causes a broad array of infections, particularly in hospitalized patients. Many studies have focused on the epidemiology and antibiotic resistance of A. baumannii, but little is currently known with respect to its virulence potential.

Methodology/Principal Findings

The aim of this work was to analyze a number of virulence-related traits of four A. baumannii strains of different origin and clinical impact for which complete genome sequences were available, in order to tentatively identify novel determinants of A. baumannii pathogenicity. Clinical strains showed comparable virulence in the Galleria mellonella model of infection, irrespective of their status as outbreak or sporadic strains, whereas a non-human isolate was avirulent. A combined approach of genomic and phenotypic analyses led to the identification of several virulence factors, including exoproducts with hemolytic, phospholipase, protease and iron-chelating activities, as well as a number of multifactorial phenotypes, such as biofilm formation, surface motility and stress resistance, which were differentially expressed and could play a role in A. baumannii pathogenicity.

Conclusion/Significance

This work provides evidence of the multifactorial nature of A. baumannii virulence. While A. baumannii clinical isolates could represent a selected population of strains adapted to infect the human host, subpopulations of highly genotypically and phenotypically diverse A. baumannii strains may exist outside the hospital environment, whose relevance and distribution deserve further investigation.  相似文献   

5.
Acinetobacter baumannii is an opportunistic pathogen, which has become a rising threat in healthcare facilities worldwide due to increasing antibiotic resistances and optimal adaptation to clinical environments and the human host. We reported in a former publication on the identification of three phopholipases of the phospholipase D (PLD) superfamily in A. baumannii ATCC 19606T acting in concerted manner as virulence factors in Galleria mellonella infection and lung epithelial cell invasion. This study focussed on the function of the three PLDs. A Δpld1-3 mutant was defect in biosynthesis of the phospholipids cardiolipin (CL) and monolysocardiolipin (MLCL), whereas the deletion of pld2 and pld3 abolished the production of MLCL. Complementation of the Δpld1-3 mutant with pld1 restored CL biosynthesis demonstrating that the PLD1 is implicated in CL biosynthesis. Complementation of the Δpld1-3 mutant with either pld2 or pld3 restored MLCL and CL production leading to the conclusion that PLD2 and PLD3 are implicated in CL and MLCL production. Mutant studies revealed that two catalytic motifs are essential for the PLD3-mediated biosynthesis of CL and MLCL. The Δpld1-3 mutant exhibited a decreased colistin and polymyxin B resistance indicating a role of CL in cationic antimicrobial peptides (CAMPs) resistance.  相似文献   

6.
The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010), one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (<1.0 endotoxin unit/106 cells) compared to wild type cells. Immunization with formalin inactivated IB010 produced a robust antibody response consisting of both IgG1 and IgG2c subtypes. Mice immunized with IB010 had significantly lower post-infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii.  相似文献   

7.

Background

Detection of Acinetobacter baumannii has been relying primarily on bacterial culture that often fails to return useful results in time. Although DNA-based assays are more sensitive than bacterial culture in detecting the pathogen, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. In addition, these molecular tools require expensive laboratory instruments. Therefore, establishing molecular tools for field use require simpler molecular platforms. The loop-mediated isothermal amplification method is relatively simple and can be improved for better use in a routine clinical bacteriology laboratory. A simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in the same platform has been developed in recent years. This method is referred to as real-time loop-mediated isothermal amplification. In this study, we attempted to utilize this method for rapid detection of A. baumannii.

Methodology and Significant Findings

Species-specific primers were designed to test the utility of this method. Clinical samples of A. baumannii were used to determine the sensitivity and specificity of this system compared to bacterial culture and a polymerase chain reaction method. All positive samples isolated from sputum were confirmed to be the species of Acinetobacter by 16S rRNA gene sequencing. The RealAmp method was found to be simpler and allowed real-time detection of DNA amplification, and could distinguish A. baumannii from Acinetobacter calcoaceticus and Acinetobacter genomic species 3. DNA was extracted by simple boiling method. Compared to bacterial culture, the sensitivity and specificity of RealAmp in detecting A. baumannii was 98.9% and 75.0%, respectively.

Conclusion

The RealAmp assay only requires a single unit, and the assay positivity can be verified by visual inspection. Therefore, this assay has great potential of field use as a molecular tool for detection of A. baumannii.  相似文献   

8.
Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA), a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments.  相似文献   

9.
Comparative genomics of multidrug resistance in Acinetobacter baumannii   总被引:3,自引:0,他引:3  
Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island—the largest identified to date—in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.  相似文献   

10.
Acinetobacter baumannii is an important nosocomial pathogen. BamA is a protein that belongs to a complex responsible for organizing the proteins on the bacterial outer membrane. In this work, we aimed to evaluate murine immune responses to BamA recombinant protein (rAbBamA) from A. baumannii in an animal model of infection, and to assess cross-reactivity of this target for the development of anti-A. baumannii vaccines or diagnostics. Immunization of mice with rAbBamA elicited high antibody titers and antibody recognition of native A. baumannii BamA. Immunofluorescence also detected binding to the bacterial surface. After challenge, immunized mice demonstrated a 40% survival increase and better bacterial clearance in kidneys. Immunoblot of anti-rAbBamA against other medically relevant bacteria showed binding to proteins of approximately 35 kDa in Klebsiella pneumoniae and Escherichia coli lysates, primarily identified as OmpA and OmpC, respectively. Altogether, our data show that anti-rAbBamA antibodies provide a protective response against A. baumannii infection in mice. However, the response elicited by immunization with rAbBamA is not completely specific to A. baumannii. Although a broad-spectrum vaccine that protects against various pathogens is an appealing strategy, antibody reactivity against the human microbiota is undesired. In fact, immunization with rAbBamA produced noticeable effects on the gut microbiota. However, the changes elicited were small and non-specific, given that no significant changes in the abundance of Proteobacteria were observed. Overall, rAbBamA is a promising target, but specificity must be considered in the development of immunological tools against A. baumannii.  相似文献   

11.
Acinetobacter baumannii (A. baumannii) is one of the most common Gram-negative pathogens that represent a major threat to human life. Because the prevalence of Multidrug-resistant biofilm-forming A. baumannii is increasing all over the world, this may lead to outbreaks of hospital infections. Nonetheless, the role of raw meat as a reservoir for A. baumannii remains unclear. Here our research was aimed to exhibit the frequency, precise identification, and genotyping of biofilm-related genes as well as antimicrobial resistance of A. baumannii isolates of raw meat specimens. Fifty-five A. baumannii strains were recovered from 220 specimens of different animal meat and then identified by Peptide Mass Fingerprinting Technique (PMFT). All identified isolates were genotyped by the qPCR method for the existence of biofilm-related genes (ompA, bap, blaPER-1, csuE, csgA, and fimH). In addition, the antimicrobial resistance against A. baumannii was detected by the Kirby-Bauer method. Based on our findings, the frequency rate of 55 A. baumannii isolates was 46.55%, 32.50%, 15.00%, and 9.68% of sheep, chicken, cow, and camel raw meat samples, respectively. The PMFT was able to identify all strains by 100%. the percentages of csuE, ompA, blaPER-1, bap, and csgA genes in biofilm and non-biofilm producer A. baumannii were 72.73%, 60%, 58.2%, 52.74%, and 25.45%, respectively. In contrast, the fimH was not detected in all non-biofilm and biofilm producer strains. The ompA, bap, blaPER-1, csgA were detected only in biofilm-producing A. baumannii isolates. The maximum degree of resistance was observed against amoxicillin/clavulanic acid (89.10%), gentamicin (74.55%), tetracycline (72.73%), ampicillin (65.45%), and tobramycin (52.73%). In conclusion, our investigation demonstrated the high incidence of multi-drug resistant A. baumannii in raw meat samples, with a high existence of biofilm-related virulence genes of ompA, bap, blaPER-1, csgA. Therefore, it has become necessary to take the control measures to limit the development of A. baumannii.  相似文献   

12.
S. aureus and A. baumannii are among the ESKAPE pathogens that are increasingly difficult to treat due to the rise in the number of drug resistant strains. Novel therapeutics targeting these pathogens are much needed. The bacterial enoyl reductase (FabI) is as potentially significant drug target for developing pathogen-specific antibiotics due to the presence of alternate FabI isoforms in many other bacterial species. We report the identification and development of a novel N-carboxy pyrrolidine scaffold targeting FabI in S. aureus and A. baumannii, two pathogens for which FabI essentiality has been established. This scaffold is unrelated to other known antibiotic families, and FabI is not targeted by any currently approved antibiotic. Our data shows that this scaffold displays promising enzyme inhibitory activity against FabI from both S. aureus and A. baumannii, as well as encouraging antibacterial activity in S. aureus. Compounds also display excellent synergy when combined with colistin and tested against A. baumannii. In this combination the MIC of colistin is reduced by 10-fold. Our first generation compound displays promising enzyme inhibition, targets FabI in S. aureus with a favorable selectivity index (ratio of cytotoxicity to MIC), and has excellent synergy with colistin against A. baumannii, including a multidrug resistant strain.  相似文献   

13.
Many sequenced strains of Acinetobacter baumannii are established nosocomial pathogens capable of resistance to multiple antimicrobials. Community-acquired A. baumannii in contrast, comprise a minor proportion of all A. baumannii infections and are highly susceptible to antimicrobial treatment. However, these infections also present acute clinical manifestations associated with high reported rates of mortality. We report the complete 3.70 Mbp genome of A. baumannii D1279779, previously isolated from the bacteraemic infection of an Indigenous Australian; this strain represents the first community-acquired A. baumannii to be sequenced. Comparative analysis of currently published A. baumannii genomes identified twenty-four accessory gene clusters present in D1279779. These accessory elements were predicted to encode a range of functions including polysaccharide biosynthesis, type I DNA restriction-modification, and the metabolism of novel carbonaceous and nitrogenous compounds. Conversely, twenty genomic regions present in previously sequenced A. baumannii strains were absent in D1279779, including gene clusters involved in the catabolism of 4-hydroxybenzoate and glucarate, and the A. baumannii antibiotic resistance island, known to bestow resistance to multiple antimicrobials in nosocomial strains. Phenomic analysis utilising the Biolog Phenotype Microarray system indicated that A. baumannii D1279779 can utilise a broader range of carbon and nitrogen sources than international clone I and clone II nosocomial isolates. However, D1279779 was more sensitive to antimicrobial compounds, particularly beta-lactams, tetracyclines and sulphonamides. The combined genomic and phenomic analyses have provided insight into the features distinguishing A. baumannii isolated from community-acquired and nosocomial infections.  相似文献   

14.
Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition metals at the pathogen-host interface, interrogating the role for these metals in A. baumannii physiology and pathogenesis could elucidate novel therapeutic strategies. Toward this end, the role for calprotectin- (CP)-mediated chelation of manganese (Mn) and zinc (Zn) in defense against A. baumannii was investigated. These experiments revealed that CP inhibits A. baumannii growth in vitro through chelation of Mn and Zn. Consistent with these in vitro data, Imaging Mass Spectrometry revealed that CP accompanies neutrophil recruitment to the lung and accumulates at foci of infection in a murine model of A. baumannii pneumonia. CP contributes to host survival and control of bacterial replication in the lung and limits dissemination to secondary sites. Using CP as a probe identified an A. baumannii Zn acquisition system that contributes to Zn uptake, enabling this organism to resist CP-mediated metal chelation, which enhances pathogenesis. Moreover, evidence is provided that Zn uptake across the outer membrane is an energy-dependent process in A. baumannii. Finally, it is shown that Zn limitation reverses carbapenem resistance in multidrug resistant A. baumannii underscoring the clinical relevance of these findings. Taken together, these data establish Zn acquisition systems as viable therapeutic targets to combat multidrug resistant A. baumannii infections.  相似文献   

15.
Acinetobacter baumannii is an opportunistic pathogen that causes nosocomial infections. Due to the ability to persist in the clinical environment and rapidly acquire antibiotic resistance, multidrug-resistant A. baumannii clones have spread in medical units in many countries in the last decade. The molecular basis of the emergence and spread of the successful multidrug-resistant A. baumannii clones is not understood. Bacterial toxin-antitoxin (TA) systems are abundant genetic loci harbored in low-copy-number plasmids and chromosomes and have been proposed to fulfill numerous functions, from plasmid stabilization to regulation of growth and death under stress conditions. In this study, we have performed a thorough bioinformatic search for type II TA systems in genomes of A. baumannii strains and estimated at least 15 possible TA gene pairs, 5 of which have been shown to be functional TA systems. Three of them were orthologs of bacterial and archaeal RelB/RelE, HicA/HicB, and HigB/HigA systems, and others were the unique SplT/SplA and CheT/CheA TA modules. The toxins of all five TA systems, when expressed in Escherichia coli, inhibited translation, causing RNA degradation. The HigB/HigA and SplT/SplA TA pairs of plasmid origin were highly prevalent in clinical multidrug-resistant A. baumannii isolates from Lithuanian hospitals belonging to the international clonal lineages known as European clone I (ECI) and ECII.  相似文献   

16.
Acinetobacter baumannii is an opportunistic Gram-negative bacterial pathogen that poses a threat for frail patients worldwide. The high ability to withstand environmental stresses as well as its resistance towards a broad range of antibiotics make A. baumannii an effective hard-to-eradicate pathogen. One of the key mechanisms mediating tolerance against antibiotic treatment is the formation of biofilms, a process that is controlled by a multitude of different regulatory mechanisms. A key factor with major impact on biofilm formation is cell-to-cell communication by quorum-sensing, which in A. baumannii is mediated by acyl homoserine lactone signaling molecules. Here we show that the Ntn-Hydrolase PvdQ from Pseudomonas aeruginosa can reduce biofilm formation by the A. baumannii ATCC 17978 type strain and several clinical isolates on abiotic surfaces. Further, our study shows that a combination treatment of PvdQ-mediated quorum-quenching with the antibiotic gentamicin has a synergistic effect on the clearance of A. baumannii biofilms and possible biofilm dispersal. Moreover, we demonstrate in a Galleria mellonella larval infection model that PvdQ administration significantly prolongs survival of the larvae. Altogether, we conclude that the acylase-mediated irreversible cleavage of quorum-sensing signaling molecules as exemplified with PvdQ can set a profound limit to the progression of A. baumannii infections.  相似文献   

17.
Acinetobacter baumannii, a rod-shape Gram-negative bacterium, is an opportunistic pathogen causing diseases in humans. This bacterium has been recognized as one of the leading causes of nosocomial infection which occurs in hospital or hospital-like setting. The antibiotic resistance of A. baumannii could result from the heavy use of antibiotics and has been recognized as a threat to human health. However, prevention against the disease caused by A. baumannii is difficult due to variable host susceptibility against their infections. We isolated 53 bacterial strains from four different university hospitals in South Korea and identified 34 out of the 53 isolates as A. baumannii, based on the nucleotide sequence of 16S rRNA and gpi genes. For the subtyping of the clinical isolates, we used enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and multilocus sequencing typing (MLST) and compared the results. The result of ERIC-PCR showed that there are 14 distinct DNA fingerprint patterns in the 34 A. baumannii clinical isolates. For MLST analysis of the isolates, we amplified and sequenced seven housekeeping genes (gltA, gyrB, gdhB, recA, cpn60, gpi, and rpoD) from each isolate. Each unique allelic profile at the concatenated nucleotide sequences of the seven genes was assigned as a sequence type (ST) and six different STs (ST92, ST105, ST138, ST169, ST262, and ST357) were detected in the 34 A. baumannii clinical isolates. Among the six STs, ST138 was the most ubiquitous in the A. baumannii clinical isolates. To examine the regional distribution of the isolates, STs were clustered into clonal complexes based on their similarity to a previously registered central genotype and the clustering was verified by network phylogenetic analysis.  相似文献   

18.
The mortality rates has been increased globally due to multidrug resistant (MDR) E.coli and A.baumanii bacterial strains and also there is an emerging resistance of the Enterobacteriaceae family of bacteria to Carbapenem antibiotics (CRE) in Saudi Arabia. The main aim of our research study is to isolate E.coli and A. baumannii bacterial species from various collected clinical samples and to evaluate the MIC and FICI of Colistin, Ciprofloxacin, Meropenem and ZnO NPs and in combination of Colistin, Ciprofloxacin, Meropenem with ZnO NPs.The clinical isolated strains of A. baumannii (MRO-17-13) and A. baumannii (MRO-17–25) was found to be sensitive towards colistin with 0.5 μg/mL concentration, whereas, all the isolated A. baumannii strains showed similar MIC value 2 mg/mL when tested with ZnO NPs, the MIC value for the ZnO NPs was found to be similar for all the E.coli strains 0.25 mg/mL. The effects of all Ciprofloxacin concentrations used in the study were bacteriostatic against E. coli (01UR19006568-01) strain but 1 mg/mL concentration of ZnO NPs alone is showed bactericidal activity, ZnO NPs effect was found to be concentration dependent, as highest concentration of ZnO NPs showed strongest antibacterial effect. In conclusion, more investigation is required to evaluate the acceptable concentration of Zno NPs and antibiotics selected to avoid toxicity and must be tested against more clinically isolated gram-negative bacterial strains.  相似文献   

19.
The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii.  相似文献   

20.

Background

Acinetobacter baumannii is known for its ability to develop resistance to the major groups of antibiotics, form biofilms, and survive for long periods in hospital environments. The prevalence of infections caused by multidrug-resistant A. baumannii is a significant problem for the modern health care system, and application of lytic bacteriophages for controlling this pathogen may become a solution.

Methodology/Principal Findings

In this study, using atomic force microscopy (AFM) and microbiological assessment we have investigated A. baumannii bacteriophage AP22, which has been recently described. AFM has revealed the morphology of bacteriophage AP22, adsorbed on the surfaces of mica, graphite and host bacterial cells. Besides, morphological changes of bacteriophage AP22-infected A. baumannii cells were characterized at different stages of the lytic cycle, from phage adsorption to the cell lysis. The phage latent period, estimated from AFM was in good agreement with that obtained by microbiological methods (40 min). Bacteriophage AP22, whose head diameter is 62±1 nm and tail length is 88±9 nm, was shown to disperse A. baumannii aggregates and adsorb to the bacterial surface right from the first minute of their mutual incubation at 37°C.

Conclusions/Significance

High rate of bacteriophage AP22 specific adsorption and its ability to disperse bacterial aggregates make this phage very promising for biomedical antimicrobial applications. Complementing microbiological results with AFM data, we demonstrate an effective approach, which allows not only comparing independently obtained characteristics of the lytic cycle but also visualizing the infection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号