首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
达赉湖自然保护区冬春季鸟类生物多样性与生境的关系   总被引:13,自引:0,他引:13  
2004年4月-5月,利用样带法对达赉湖自然保护区5种主要生境类型中冬春季鸟类生物多样性进行了调查,利用Shannon-Wiener指数和Smith相关性系数分析了这5种生境类型中冬春季鸟类的生物多样性、区系、鸟类的群落组成、群落间的相似性和均匀度。结果表明,古北界鸟类是组成达赉湖鸟类群落的主体(约占冬春季鸟类的86%);芦苇湿地的鸟类多样性接近于芦苇甸的2倍:芦苇湿地鸟类群落的物种多样性最高(Shannon-Wiener指数为1.3001),而芦苇甸中鸟类群落的物种多样性最低(Shannon-Wiener指数为0.6629);芦苇湿地和芦苇甸两鸟类群落组成的相关性指数仅为0.038;从具有共同物种的多少考虑,典型草原和芨芨草原鸟类群落之间的关联较大。  相似文献   

2.
古田山不同干扰程度森林的群落恢复动态   总被引:1,自引:0,他引:1  
森林采伐后次生林的恢复过程对于生物多样性的保护和生态系统功能的重建具有重要意义。作者以古田山不同干扰程度的12个1 ha 森林样地为研究对象, 运用群落多元统计方法, 探讨了自然恢复过程中森林群落组成及物种多样性的动态变化及趋势。结果表明: 不同恢复阶段森林样地的群落组成存在显著性差异, 而同一恢复阶段的样地具有高度的相似性。物种丰富度随恢复进程有增加的趋势, 但各阶段差异并不显著; 物种均匀度除人工林较低以外, 其他恢复阶段之间无显著性差异。不同恢复阶段研究样地的群落组成及物种多样性的差异主要存在于林冠层。灌木及更新层具有各自的指示种, 人工林的指示种为落叶灌木或阳性乔木, 幼龄次生林的指示种为常绿灌木或小乔木, 老次生林的指示种为亚乔木层常绿树种, 老龄林的指示种为林冠层树种。上述结果表明古田山不同人为干扰程度森林群落的物种多样性具有较强的自我恢复能力。尽管物种组成难以预测, 但处于同一恢复阶段的森林, 其幼树的生活型组成呈现出一致的变化趋势。  相似文献   

3.
为了解天然林和人工林群落的结构、组成和物种多样性的差异,该研究选择三种类型(天然阔叶林、人工杉木林和油茶林)的森林群落,比较分析其在不同垂直空间层次上的群落数量特征及物种多样性(物种丰富度、α多样性和β多样性)特点。结果表明:(1)总体上,阔叶林的物种丰富度最高,其次是油茶林。乔木层和灌木层均以阔叶林的物种丰富度最高,其次为杉木林; 草本层以油茶林的物种丰富度最高,其次为杉木林和阔叶林。三种类型的群落在各空间层次重要值前5位物种组成上均有较大差异。(2)在单个样地水平上,三种类型的群落α多样性差异主要存在于乔木层,以阔叶林的样地间差异最大,其次为杉木林; 灌木层的α多样性在类型间差异较小; 草本层的α多样性,油茶林与其他两个类型差异明显,阔叶林与杉木林之间差异较小。(3)群落类型间β多样性分析表明,就所有三个层次而言,阔叶林与油茶林之间物种组成差异最大; 就灌木层而言,油茶林与杉木林的物种组成最相似,其次是阔叶林与杉木林; 就草本层而言,油茶林与杉木林的物种组成相似度最高,其次为阔叶林与油茶林。总之,三种森林类型在群落结构、物种多样性方面差异显著,反映了人为干扰对森林群落的影响。  相似文献   

4.
多样化的森林群落为植物生长提供了不同的微生境。然而,物种在不同类型森林群落中是呈随机分布还是生态专化仍有待阐明。基于不同优势物种群落在太行山猕猴国家自然保护区建立了4个1 hm2(100 m×100 m)森林动态监测样地,采用Kruskal-Wallis方法、Betadisper检验分析不同群落间的物种组成和结构差异,利用相关网络和指示种分析探索物种-群落间的关系。结果表明,不同群落间木本植物的多度、丰富度和物种组成存在显著差异;共有5种物种同时出现在四个群落中,有43.82%(39/89)的物种分布在两个或两个以上的群落中;网络分析结果显示,物种与群落之间的连接指数为41.29%,专化指数为60.89%;指示种分析显示不同植物群落间指示物种不同。了解了太行山猕猴国家自然保护区不同群落的物种组成和群落结构特征。研究结果同时表明,木本植物在不同群落中的分布具有较高的专化特征。希望本研究能为该区域木本植物多样性维持机制的理解和物种保护提供一定参考。  相似文献   

5.
植物多样性对亚热带森林土壤微生物群落的影响   总被引:1,自引:0,他引:1  
植物群落组成的改变能够直接或间接地影响土壤生态过程并调节参与这些过程的土壤生物,树种特性和多样性是影响土壤微生物多样性和群落结构的关键因素。本项目利用江西新岗山建立的中国亚热带森林生物多样性与生态系统功能(Biodiversity-Ecosystem Functioning Experiment China)BEF-China研究平台,观测了样方水平下不同多样性组成(单物种、2物种、4物种和8物种)对土壤微生物群落结构的影响。结果表明:在森林生态系统演替初期,植物多样性的改变对土壤微生物群落结构具有显著影响,在不同多样性水平处理下,微生物磷脂脂肪酸含量随着植物多样性的增加,表现出先升高后降低的趋势,但各类群微生物磷脂脂肪酸含量并未表现出对植物多样性的明显响应。其中,土壤和凋落物的理化指标能够分别解释微生物群落结构变异的28.4%和12.3%。森林生态系统较高的异质性和地下生态过程响应的滞后性,导致了土壤微生物对植物多样性组成的响应需要较长时间才能显现出来,因此,为了更好地评价地上生物多样性与生态系统功能的关联,应长期监测森林生态系统多样性组成对地下生态过程的影响。  相似文献   

6.
谢寿安  吕淑杰  袁锋  杨忠岐 《生态学报》2005,25(11):2961-2967
为探讨不同森林植物群落中植物类群与小蠹类群的结构特征以及小蠹类群随海拔高度而发生的变化,于2001~2003年夏季,采用取样调查法,依据海拔高度将秦岭火地塘生态定位站植物群落划分为山麓农田和侧柏群落(群落Ⅰ)、油松-华山松-锐齿栎群落(群落Ⅱ)、油松-华山松-栓皮栎群落(群落Ⅲ)、油松-华山松-辽东栎群落(群落Ⅳ),亚高山云杉林群落(群落Ⅴ),亚高山冷杉林群落(群落Ⅵ)6种类型的植物群落中,分乔木层、灌木层、草本层3个层次,分别计算出高等森林植物群落和针叶树小蠹类群的Shannon-W iener多样性指数、B erger-Parker生态优势度和P ie lou均匀度指数。结果表明,在山麓灌丛群落至针阔混交林群落之间,森林植物物种多样性指数、群落均匀度指数和物种丰富度呈递增趋势;在针阔混交林群落与亚高山云杉林群落、亚高山冷杉林群落之间,物种多样性指数、群落均匀度指数和物种丰富度呈下降趋势。从总体看,阔叶林中森林植被的多样性程度高于亚高山云杉林和冷杉林。群落优势度指数的变化规律则与之相反。不同森林群落类型中针叶树小蠹类群的多样性、均匀度和优势度研究结果表明,针叶树小蠹物种多样性指数和均匀度由高到低的排列顺序依次为:油松-华山松-栓皮栎群落、油松-华山松-锐齿栎群落、油松-华山松-辽东栎群落、亚高山云杉林群落、亚高山冷杉林群落、山麓农田侧柏群落;针叶树小蠹群落优势度的变化趋势与之相反。6种类型的植物群落中,共获得针叶树小蠹21种。讨论了小蠹这一昆虫类群对森林植物群落的指示意义、海拔高度对森林植物和小蠹组成及分布的主要影响、研究森林生态系统各部分组成及相互关系的必要性以及进一步深入研究森林群落物种多样性需要注意的问题。  相似文献   

7.
安太堡矿区复垦地植被种间关系及土壤因子分析   总被引:1,自引:0,他引:1  
为研究安太堡矿区植被复垦过程中不同植物群落类型的种间关系及影响群落稳定性的外部环境因子, 作者对矿区的植物群落和自然生境进行了野外调查。对森林、灌丛和草地3种群落分别在10 m×10 m、 4 m×4 m和1 m×1 m的尺度上, 采用校正的χ2检验、Spearman秩相关分析研究了不同群落类型中出现频率较高的物种之间的联结性, 同时应用灰色关联识别对影响群落稳定性的土壤因子进行了识别。结果表明: 草地群落中物种组成贫乏, 以旱生种为优势类群, 物种间既具有一定的联结性, 又具有相当独立的分布格局。灌丛群落主要种整体呈现正联结, 其组成成分仍以旱生或中旱生物种为主, 部分中生性物种的出现及其与优势种的正相关关系都在一定程度上指示了灌丛群落向正向演替方向进行。森林群落主要种也整体呈现正联结, 表明群落处于植被演替进程中一个相对稳定的过渡阶段。土壤因子与植物群落稳定性的关联顺序为: 有机质> N > P> K> Cu> Mn > pH > Zn>电导率。总的来看, 矿区现有森林群落配置方式是较灌丛群落和草地群落配置方式更适合于矿区特殊生境的群落类型, 而土壤因子中有机质在决定群落稳定性方面发挥重要作用。此研究结果对制定该矿区植被恢复计划具有参考价值。  相似文献   

8.
乌鲁木齐地区典型灌木群落结构特征及其多样性研究   总被引:2,自引:0,他引:2  
根据2013年对乌鲁木齐地区典型灌木群落野外50个样地调查的数据,结合双向指示种分析分类方法,从各群落基本特征、物种组成、区系特征、物种多样性等方面对乌鲁木齐地区典型灌木群落结构特征及其多样性进行了分析。结果表明:(1)被调查的50个样地灌木植被群落中共出现了169种植物(其中灌木植物36种,草本植物133种),隶属于118属,31科,其中以藜科、菊科、禾本科等干旱区的表征科居多。灌木物种的植物区系以地中海区、西亚至中亚分布和北温带分布为主。(2)采用TWINSPAN分类方法可将50个样方划分为10个灌木群落类型。乌鲁木齐地区典型灌木群落多样性指数偏低,黑果小檗+宽刺蔷薇+金丝桃叶绣线菊群落的多样性指数最大,群落之间水平差异显著;欧亚圆柏群落、宽刺蔷薇+矮锦鸡儿群落和铃铛刺+喀什菊群落次之;多枝柽柳群落和琵琶柴+喀什霸王群落最低。(3)属于灌丛植被类型的灌木群落,物种多样性指数为草本层灌木层;属于荒漠植被类型的灌木群落,物种多样性空间结构为灌木层草本层。  相似文献   

9.
应用物种指示值法解析昆嵛山植物群落类型和植物多样性   总被引:1,自引:0,他引:1  
生物指示目前被广泛用于各类生态系统恢复的监测和评估、生态系统管理的政策与法规的制定等。本文的目的是采用物种指示值法初步解析昆嵛山植物群落类型及其植物多样性的特点,为进一步开展昆嵛山森林自然恢复评价和森林管理提供参考依据。物种累计曲线分析表明,从昆嵛山自然保护区40块永久性标准样地实际采到的物种占全部物种数(估计值ACE为131.26)的92.9%,显示抽样充分。采用主坐标分析将昆嵛山森林群落进一步划分为六种林分类型,通过物种指示值分析得到了各林分类型的指示物种。其中,黑松、山槐、麻栎是黑松林的指示物种;郁李、赤松、山胡椒是赤松林的指示物种;日本落叶松/刺杉林的显著指示物种包括日本落叶松、水榆花楸、刺杉、白檀和水蜡。针叶树-麻栎混交林的指示物种是麻栎;而针叶树-杂木混交林的指示物种构成复杂,如粘鱼须、楸树、华山松,等。阔叶林的物种组成很不相同,分别有枫香林、麻栎林、刺槐林、和水榆花楸林。综合比较不同林分类型乔灌草的整体多样性特点表明,6种林分类型的物种多度和物种丰富度无显著差异;阔叶林的Fisher α指数(P< 0.001)、Shannon–Wiener指数(P = 0.001),Simpson指数(P = 0.034)与其它5种林分类型相比差异显著;其他五种林分类型的Fisher α指数和Shannon–Wiener指数无显著差异,但Simpson指数在这些林分间差异显著。昆嵛山林分类型的多样性与30年前树种引进和人工造林等人为干扰密不可分。  相似文献   

10.
太行山区位于黄土高原与华北平原之间,是我国生物多样性保护的重要优先区之一.本文以广义太行山涉及的108个行政县域为研究区域,基于太行山山地森林群落植物清查数据,系统分析了太行山山地森林群落的科属特征、区系组成、植物多样性地理格局及其丰富度热点地区.结果表明: 调查的778个样地得到太行山山地森林群落种子植物共计100科447属963种,其中,裸子植物3科7属12种,被子植物97科440属951种,生活型以草本植物占优势(71.1%);科的分布区类型以热带分布(38%)和温带分布(24%)为主,属的分布区类型以温带成分占主导(68.7%);太行山山地森林群落植物多样性的水平分布格局呈由西南向东北逐渐递增的趋势,群落物种多样性与经纬度均呈正相关关系,但不同生活型植物的多样性格局不相一致,草本植物多样性与经纬度呈正相关,而木本植物多样性与经纬度则无明显相关性;在垂直梯度上,太行山山地森林群落植物丰富度呈单峰分布,集中分布在400~1800 m的低中海拔地带,在1000~1200 m丰富度最高;基于群落清查数据绘制太行山山地森林群落植物丰富度分布图,鉴别出小五台山、云台山、太岳山、王屋山、中条山等山地为植物丰富度热点地区,应列入太行山优先保护的重点规划区域.  相似文献   

11.
《Ecological Indicators》2008,8(5):767-770
In tropical central Viet Nam, as part of a forest allocation program, forest condition should be monitored by local stakeholders. If local ecological knowledge can be integrated into the development of indicator species, then improvements in both the rigor of the indicator list and the involvement of local people in the monitoring process may occur. We used a dual methodology to derive two forest condition indicator species lists using trees, based on local ecological knowledge and quantitative forest surveys. Combining these lists allowed us to produce a final list of thirteen ‘probable’ and eight ‘possible’ indicator tree species for forest condition monitoring. Despite some possible limitations to the methodology, we encourage the use of multiple data sets when working with rural communities that are involved in the monitoring process. Local people can propose timely and appropriate measures of forest conservation and improvement, and can definitely integrate indicator species into monitoring community forests.  相似文献   

12.
In most habitats in temperate zones, species show clear intra-annual shifts in abundance and species composition. Here we aimed to present a comprehensive picture of community composition and seasonal dynamics of carabid beetles (Coleoptera: Carabidae) in broad-leaved Korean pine mixed forest in Northeast China, which harbors a large diversity. We sampled 23,336 individuals from 14 genera and 39 species with pitfall traps over more than 1 year in a 25-ha plot. The six most abundant species accounted for 76.65 % of all individuals. Species estimations for the 25 ha plot ranged from 40 to 45 species. Overall abundance, species diversity, community composition, and abundance of individual species varied seasonally. Most of the abundant species showed an activity pattern of single peak, and were most active between July and early September. Few species showed a bimodal seasonal activity pattern. Both temperature and precipitation significantly influenced the carabid community within a year. Hierarchical clustering indicated that carabid communities of ten consecutive sampling periods could be partitioned into three time-windows, respectively, corresponding with warm temperature-high rainfall season, warm temperature-low rainfall season, and cool and cold season. By using the extended method of indicator species analysis, 11 indicator species were identified for the three time-groups and their combinations, suggesting the existence of temporal niche partitioning among carabid species. We suggest that intra-annual patterns of carabid abundance and species composition can be explained by species responses to seasonal changes in hydrothermal conditions. Cost-effective sampling effort to assess native carabid diversity and assemblage was also discussed in this study.  相似文献   

13.
Logging can significantly change the structure of rainforest communities. To better understand how logging drives this change, butterflies and environmental variables were assessed within both unlogged and logged forest in Indonesian Borneo. In the whole dataset, we found local environmental variables and geographic distance combined captured 53.1% of the variation in butterfly community composition; 29.6% was associated with measured local environmental variables, 13.6% with geographic distance between sites, and 9.9% with covariation between geographic distance and environmental variables. The primary axis of variation in butterfly community composition represented a disturbance gradient from unlogged to logged forest. Subsequent axes represented gradients influenced by variables such as canopy cover and total tree density. There were significant associations between environmental variables and geographic range and larval host plant use of species. Specifically, butterflies using trees as larval host plants and those with distributions limited to Borneo were more likely to be present in unlogged forest. By contrast, species that tended to be more abundant in logged forest were those with widespread distributions and those using lianas and grasses as larval host plants. The results of this study highlight the importance of environmental variables and disturbance, e.g., selective logging, in structuring rainforest community diversity. Moreover, they confirm how species traits, such as larval food use and geographic distributions can determine patterns of species abundance following environmental change.  相似文献   

14.
Abstract

Conservation strategies increasingly refer to indicators derived from large biological data. However, such data are often unique with respect to scale and species groups considered. To compare richness patterns emerging from different inventories, we analysed forest species richness at both the landscape and the community scales in Switzerland. Numbers of forest species were displayed using nationwide distributional species data and referring to three different definitions of forest species. The best regression models on a level of four predictor variables ranged between adj. R 2 = 0.50 and 0.66 and revealed environmental heterogeneity/energy, substrate (rocky outcrops) and precipitation as best explanatory variables of forest species richness at the landscape scale. A systematic sample of community data (n = 729; 30 m2, 200 m2, 500 m2) was examined with respect to nationwide community diversity and plot species richness. More than 50% of all plots were assigned to beech forests (Eu-Fagion, Cephalanthero-Fagion, Luzulo-Fagion and Abieti-Fagion), 14% to Norway spruce forests (Vaccinio-Piceion) and 13% to silver fir forests (Piceo-Abietion). Explanatory variables were derived from averaged indicator values per plot, and from biophysical and disturbance factors. The best models for plot species richness using four predictor variables ranged between adj. R 2 = 0.31 and 0.34. Light (averaged L-indicator, tree canopy) and substrate (averaged R-indicator and pH) had the highest explanatory power at all community scales. By contrast, the influence of disturbance variables was very small, as only a small portion of plots were affected by this factor. The effects of disturbances caused by extreme events or by management would reduce the tree canopies and lead to an increase in plant species richness at the community scale. Nevertheless, such community scale processes will not change the species richness at the landscape scale. Instead, the variety of different results derived from different biological data confirms the diversity of aspects to consider. Therefore, conservation strategies should refer to value systems.  相似文献   

15.
How does tree species composition vary in relation to geographical and environmental gradients in a globally rare tropical/subtropical broadleaf dry forest community in the Caribbean? We analyzed data from 153 Forest Inventory and Analysis (FIA) plots from Puerto Rico and the U.S. Virgin Islands (USVI), along with 42 plots that we sampled in the Bahamian Archipelago (on Abaco and Eleuthera Islands). FIA data were collected using published protocols. In the Bahamian Archipelago, we recorded terrain and landscape variables, and identified to species and measured the diameter of all stems ≥5 cm at 1.3 m height in 10 m radius plots. All data were analyzed using clustering, ordination, and indicator species analysis at regional and local scales. Regionally, the largest cluster group included over half of all plots and comprised plots from all three island groups. Indicator species were native Bursera simaruba (Burseraceae) and Metopium toxiferum (Anacardiaceae). Species composition was similar to dry forests throughout the region based on published studies. Other groups we identified at the regional scale consisted of many Puerto Rico and USVI plots that were dominated by non-native species, documenting the widespread nature of novel ecosystems. At the local scale the Bahamian data clustered into two main groups corresponding largely to the two islands sampled, a pattern consistent with the latitudinal aridity gradient. Bahamian dry forests share previously undocumented compositional similarity with native-dominated dry forests found throughout the Caribbean, but they lack extensive post-disturbance novel dry forests dominated by non-native trees found in the Greater Antilles.  相似文献   

16.
《植物生态学报》2017,41(11):1149
Aims Based on the dataset of a broad-leaved Korean pine forest in Jiaohe, Jilin Province, this research compared the influences of species diversity and community structure on productivity. We aim to explain the relationship between diversity and productivity for better forest management. Methods We used the data of 10 973 woody-plants in a 11.76 hm2 large sample plot and analyzed the correlations between 7 different indices of species diversity or community structure and productivity. Structural equation model was used to compare the effects of species diversity and community structure on productivity. Important findings The results showed that: (1) Both species diversity and community structure had significant effects on productivity when they were considered separately in linear regression analysis, i.e. species evenness was negatively correlated with productivity, the Shannon index of community structure was positively correlated with productivity and the Gini index was negatively correlated with productivity. (2) In the structural equation model, when simultaneously considered, community structure had stronger influence on productivity than species diversity. Our research suggests that, the effects of community structure on productivity are greater than species diversity and it is important to increase community structure complexity to improve forest productivity during forest management.  相似文献   

17.
Soil moisture and nutritional characteristics are frequently assessed using plant species and community bioindication, e.g., the Ellenberg system of species indicator values. This method, based on complete inventories of plant species present in plots, is time-consuming, which could prevent its general use for forest or other natural land management. Our aim was to determine the impact of a reduction in the time spent to carry out a floristic inventory on the quality of soil characteristic assessment using plant bioindication. We compared the measurements of soil pH-H2O (pH), organic carbon to total nitrogen ratio (C:N) and base saturation (BS) in the 0–5 cm soil layer of 470 plots with the same variables estimated from floristic inventories of increasing duration, using plant indicator values (IV) from the EcoPlant database. The performance of predictions was evaluated by the square of the linear correlation coefficient between measured and predicted values (R2) and the root mean square error (RMSE) of predictions.The number rather than the percentage of total plot species used for the estimations was determinant for the prediction of soil pH quality. Performance of bioindication of pH, BS and C:N reached the maximum R2 using the first 20–25 species recorded per plot, corresponding to a 14-min-long floristic inventory in comparison to a mean of 28 min spent to carry out a complete floristic inventory. A precision of prediction of 80% of the maximal precision was obtained after 4–5 min (6–12 inventoried species) for the three studied variables. These results are independent of the nutritional capability of the soils and were similar at the national and local scales. In order to estimate soil nutritional resources by plant bioindication, it is feasible to significantly reduce the time spent on floristic inventories and, thus, their cost. This is especially useful when the goal is to map the soil quality for decision-making in forest management.  相似文献   

18.
The large, comprehensive vegetation database of Mecklenburg-Vorpommern/NE Germany with 51,328 relevés allowed us to study an entire regional flora of 133 non-native plants (NNP, immigration after 1492 AD) with regard to their preferences to all kinds of habitats and along different ecological gradients. For each relevé, we computed average Ellenberg indicator values (EIV) for temperature, light, moisture, reaction, nutrients and salt as well as plant strategy type weights. We partitioned the dataset into relevés with and without occurrences of NNP and compared them with respect to the relative frequencies of EIVs and strategy type weights. We identified deviations from random differences by testing against permuted indicator values. To account for bias in EIV between community types, NNP preferences were differentiated for 34 phytosociological classes. We tested significance of preferences for the group of NNP as a whole, as well as for single NNP species within the entire dataset, as well as differentiated by phytosociological classes and formations. NNP as a group prefer communities with high EIVs for temperature and nutrients and low EIVs for moisture. They avoid communities with low EIV for reaction and high EIV for salt. NNP prefer communities with high proportions of ruderal and low proportion of stress strategists. The differentiation by phytosociological classes reinforces the general trends for temperature, nutrients, moisture, R and S strategy types. Nevertheless, preferences of single species reveal that NNP are not a congruent group but show individualistic ecological preferences.  相似文献   

19.
This study compares two approaches for constructing diatom-based indices for monitoring river eutrophication. The first approach is based on weighted averaging of species indicator values with the underlying assumption that species have symmetrical unimodal distributions along the nutrient gradient, and their distributions are sufficiently described by a single indicator value per species. The second approach uses multiple indicator values for individual taxa and is based on the possibility that species have complex asymmetrical response curves. Multiple indicator values represent relative probabilities that a species would be found within certain ranges of nutrient concentration. We used 155 benthic diatom samples collected from rivers in the Northern Piedmont ecoregion (Northeastern U.S.A.) to construct two datasets: one used for developing models and indices, and another for testing them. To characterize the shape of species response curves we analyzed changes in the relative abundance of 118 diatom taxa common in this dataset along the total phosphorus (TP) gradient by fitting parametric and non-parametric regression models. We found that only 34 diatoms had symmetrical unimodal response to TP. Among several indices that use a single indicator value for each species, the best was the weighted averaging partial least square (WA-PLS) inference model. The correlation coefficient between observed and inferred TP in the test dataset was 0.67. The best index that employed multiple indicator values for each species had approximately the same predictive power as the WA-PLS based index, but in addition, this index provided a sample-specific measure of uncertainty for the TP estimation.  相似文献   

20.
The species diversity of trees maintained in tropical rain forests is much higher than in temperate, boreal, or seasonally dry tropical forests. Many hypotheses have been proposed for higher diversity in tropical rain forests, including: (i) higher specialization of resource use, (ii) different mode of disturbance, (iii) smaller opportunity for competition on oligotrophic soil, (iv) higher productivity, (v) more active specific herbivores and pathogens, (vi) evolutionary/ecological history. In this paper we report mathematical models for tree-by-tree replacement. First the analysis of random drift model shows that the effect of gap size to species diversity is not very strong. Second we study phenological segregation model, which has the following assumptions: Basic mechanism for many species to coexist in the community is assumed given by the storage effect of lottery model, as species differ in seasonality in peak fruit production and in the subsequent period of high regeneration ability. Gaps formed during unfavorable season accumulate and become available for regeneration in the beginning of the growing season. The resulting synchronization of regeneration opportunity jeopardizes the coexistence of many similar species in seasonal environments. Analysis of a mathematical model shows: (1) the existence of unfavorable season can greatly reduce the diversity of coexisting species. (2) Diversity in the equilibrium community can be high when niche width of each species is broad and resource use is strongly overlapped. (3) Equilibrium community may include several distinct groups of species differing in phenology of regeneration. Effect of unequal niche width and frequency dependent regeneration are also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号