首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Experimental manipulation in birds has shown that trunk dermis has a double origin: dorsally, it derives from the somite dermomyotome, while ventrally, it is formed by the somatopleure. Taking advantage of an nlacZ reporter gene integrated into the mouse Msx1 locus (Msx1(nlacZ) allele), we detected segmental expression of the Msx1 gene in cells of the dorsal mesenchyme of the trunk between embryonic days 11 and 14. Replacing somites from a chick host embryo by murine Msx1(nlacZ )somites allowed us to demonstrate that these Msx1-(beta)-galactosidase positive cells are of somitic origin. We propose that these cells are dermal progenitor cells that migrate from the somites and subsequently contribute to the dorsalmost dermis. By analysing Msx1(nlacZ) expression in a Splotch mutant, we observed that migration of these cells does not depend on Pax3, in contrast to other migratory populations such as limb muscle progenitor cells and neural crest cells. Msx1 expression was never detected in cells overlying the dermomyotome, although these cells are also of somitic origin. Therefore, we propose that two somite-derived populations of dermis progenitor cells can be distinguished. Cells expressing the Msx1 gene would migrate from the somite and contribute to the dermis of the dorsalmost trunk region. A second population of cells would disaggregate from the somite and contribute to the dermis overlying the dermomyotome. This population never expresses Msx1. Msx1 expression was investigated in the context of the onset of dermis formation monitored by the Dermo1 gene expression. The gene is downregulated prior to the onset of dermis differentiation, suggesting a role for Msx1 in the control of this process.  相似文献   

10.
11.
Reciprocal defects in signaling between the myotome and the sclerotome compartments of the somites in PDGFRalpha and Myf5 mutant embryos lead to alterations in the formation of the vertebrae and the ribs. To investigate the significance of these observations, we have examined the role of PDGF signaling in the developing somite. PDGFA ligand expression was not detected in the myotome of Myf5 null mutant embryos and PDGFA promoter activity was regulated by Myf5 in vitro. PDGFA stimulated chondrogenesis in somite micromass cultures as well as in embryos when PDGFA was knocked into the Myf5 locus, resulting in increased vertebral and rib development. PDGFA expression in the myotome was fully restored in embryos in which MyoD has been introduced at the Myf5 locus but to a lesser extent in similar myogenin knock-in embryos. These results underscore the importance of growth factor signaling within the developing somite and suggest an important role for myogenic determination factors in orchestrating normal development of the axial skeleton.  相似文献   

12.
13.
14.
We report the cloning of two new quail myogenic cDNAs, quail myogenic factor 2 (qmf2) and qmf3, which encode helix-loop-helix proteins homologous to mammalian myogenic factors myogenin and myf-5. In situ hybridization has been used to investigate the developmental expression of qmf2 and qmf3, as well as qmf1, the quail homologue to mammalian MyoD1, during the formation of the brachial somites. These studies show that qmf1 and qmf3 are activated sequentially in medially localized somite cells, immediately following somite formation but prior to myotome formation. qmf1, qmf2, and qmf3 are expressed in the myotome of compartmentalized somites. These findings suggest that determination of the myogenic cell lineage in quail somites is a progressive process controlled by influences of the neural tube on the expression of the qmf regulatory genes in newly forming somites.  相似文献   

15.
Amphioxus and vertebrates are the only deuterostomes to exhibit unequivocal somitic segmentation. The relative simplicity of the amphioxus genome makes it a favorable organism for elucidating the basic genetic network required for chordate somite development. Here we describe the developmental expression of the somite marker, AmphiTbx15/18/22, which is first expressed at the mid-gastrula stage in dorsolateral mesendoderm. At the early neurula stage, expression is detected in the first three pairs of developing somites. By the mid-neurula stage, expression is downregulated in anterior somites, and only detected in the penultimate somite primordia. In early larvae, the gene is expressed in nascent somites before they pinch off from the posterior archenteron (tail bud). Integrating functional, phylogenetic and expression data from a variety of triploblast organisms, we have reconstructed the evolutionary history of the Tbx15/18/22 subfamily. This analysis suggests that the Tbx15/18/22 gene may have played a role in patterning somites in the last common ancestor of all chordates, a role that was later conserved by its descendents following gene duplications within the vertebrate lineage. Furthermore, the comparison of expression domains within this gene subfamily reveals similarities in the genetic bases of trunk and cranial mesoderm segmentation. This lends support to the hypothesis that the vertebrate head evolved from an ancestor possessing segmented cranial mesoderm.  相似文献   

16.
Gene expression in skeletal muscle is regulated by a family of myogenic basic helix-loop-helix (bHLH) proteins. The binding of these bHLH proteins, notably MyoD and myogenin, to E-boxes in their own regulatory regions is blocked by protein kinase C (PKC)-mediated phosphorylation of a single threonine residue in their basic region. Because electrical stimulation increases PKC activity in skeletal muscle, these data have led to an attractive model suggesting that electrical activity suppresses gene expression by stimulating phosphorylation of this critical threonine residue in myogenic bHLH proteins. We show that electrical activity stimulates phosphorylation of myogenin at threonine 87 (T87) in vivo and that calmodulin-dependent kinase II (CaMKII), as well as PKC, catalyzes this reaction in vitro. We find that phosphorylation of myogenin at T87 is dispensable for skeletal muscle development. We show, however, that the decrease in myogenin (myg) expression following innervation is delayed and that the increase in expression following denervation is accelerated in mutant mice lacking phosphorylation of myogenin at T87. These data indicate that two distinct innervation-dependent mechanisms restrain myogenin activity: an inactivation mechanism mediated by phosphorylation of myogenin at T87, and a second, novel regulatory mechanism that regulates myg gene activity independently of T87 phosphorylation.  相似文献   

17.
18.
19.
20.
The embryology of amphioxus has much in common with vertebrate embryology, reflecting a close phylogenetic relationship between the two groups. Amphioxus embryology is simpler in several key respects, however, including a lack of pronounced craniofacial morphogenesis. To gain an insight into the molecular changes that accompanied the evolution of vertebrate embryology, and into the relationship between the amphioxus and vertebrate body plans, we have undertaken the first molecular level investigation of amphioxus embryonic development. We report the cloning, complete DNA sequence determination, sequence analysis and expression analysis of an amphioxus homeobox gene, AmphiHox3, evolutionarily homologous to the third-most 3' paralogous group of mammalian Hox genes. Sequence comparison to a mammalian homologue, mouse Hox-2.7 (HoxB3), reveals several stretches of amino acid conservation within the deduced protein sequences. Whole mount in situ hybridization reveals localized expression of AmphiHox3 in the posterior mesoderm (but not in the somites), and region-specific expression in the dorsal nerve cord, of amphioxus neurulae, later embryos and larvae. The anterior limit to expression in the nerve cord is at the level of the four/five somite boundary at the neurula stage, and stabilises to just anterior to the first nerve cord pigment spot to form. Comparison to the anterior expression boundary of mouse Hox-2.7 (HoxB3) and related genes suggests that the vertebrate brain is homologous to an extensive region of the amphioxus nerve cord that contains the cerebral vesicle (a region at the extreme rostral tip) and extends posterior to somite four.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号