首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Botrytis blight, caused by Botrytis cinerea (Bc), is an important disease on roses grown in plastic greenhouses in Brazil. Biocontrol with Clonostachys rosea (Cr) applied to leaves and crop debris to reduce pathogen sporulation can complement other control measures for disease management. Two experiments, each with a rose cultivar, were conducted in a plastic greenhouse. For ‘Red Success,’ four treatments were compared: (1) control; (2) fortnightly sprays of Cr; (3) weekly sprays of mancozeb; and (4) weekly sprays of either Cr or mancozeb to the lower third of the plants and the debris. For ‘Sonia,’ treatment 4 was not included. Samples were taken from debris (leaves and petals) at ten 15-day intervals and plated on PCA medium. Sporulation of fungi and incidence of Botrytis blight on buds were assessed. For both cultivars, C treatments significantly (P=0.05) reduced Bc sporulation. However, disease incidence was not consistently reduced, probably because the applications of C. rosea started when Botrytis blight epidemic was advanced and no sanitation practices were performed on nontreated plots. From the present and previous studies, continuous application of Cr on debris, associated with sanitation practices, has the potential to reduce Bc sporulation and disease incidence in the buds.  相似文献   

2.
Effects of carbon concentration and carbon to nitrogen (C:N) ratio on six biocontrol fungal strains are reported in this paper. All fungal strains had extensive growth on the media supplemented with 6–12 g l−1 carbon and C:N ratios from 10:1 to 80:1, and differed in nutrient requirements for sporulation. Except for the two strains of Paecilomyces lilacinus, all selected fungi attained the highest spore yields at a C:N ratio of 160:1 when the carbon concentration was 12 g l−1 for Metarhizium anisopliae SQZ-1-21, 6 g l−1 for M. anisopliae RS-4-1 and Trichoderma viride TV-1, and 8 g l−1 for Lecanicillium lecanii CA-1-G. The optimal conditions for P. lilacinus sporulation were 8 g l−1 carbon with a C:N ratio of 10:1 for M-14 and 12 g l−1 carbon with a C:N ratio of 20:1 for IPC-P, respectively. The results indicated that the influence of carbon concentration and C:N ratio on fungal growth and sporulation is strain dependent; therefore, consideration for the complexity of nutrient requirements is essential for improving yields of fungal biocontrol agents.  相似文献   

3.
Valdensinia heterodoxa (Sclerotiniacae) is a potential fungal bioherbicide for control of salal (Gaultheria shallon). The effect of culture media, substrates and relative humidity (RH) on growth, sporulation and conidial discharge of V. heterodoxa was determined for two isolates PFC2761 and PFC3027 in vitro. Culture media significantly affected the growth, sporulation, and conidial discharge of V. heterodoxa. Of eight agar media used, colony radial growth was optimal on salal oatmeal agar and salal potato dextrose agar for isolates PFC2761 and PFC3027, respectively; whereas sporulation was at an optimum on salal oatmeal agar for both isolates. Of the eight liquid media tested, mycelial production was highest on wheat bran–salal–potato dextrose broth. Growth on solid substrates greatly stimulated sporulation and conidial discharge of V. heterodoxa. Of the 12 solid substrates used, the greatest numbers of discharged conidia were observed from wheat bran and wheat bran–salal within 14 d of sporulation. Sporulation on solid substrates continued for 42 d. RH significantly affected the sporulation and conidial discharge for both isolates across all solid substrates tested. No conidia were produced or discharged below 93 % RH on wheat bran–salal and millet. With an increase of the RH from 93 to 97 %, sporulation and the number of discharged conidia increased significantly for both isolates on wheat bran–salal, but not on millet.  相似文献   

4.
Endophytic isolates of Trichoderma species are being considered as biocontrol agents for diseases of Theobroma cacao (cacao). Gene expression was studied during the interaction between cacao seedlings and four endophytic Trichoderma isolates, T. ovalisporum-DIS 70a, T. hamatum-DIS 219b, T. harzianum-DIS 219f, and Trichoderma sp.-DIS 172ai. Isolates DIS 70a, DIS 219b, and DIS 219f were mycoparasitic on the pathogen Moniliophthora roreri, and DIS 172ai produced metabolites that inhibited growth of M. roreri in culture. ESTs (116) responsive to endophytic colonization of cacao were identified using differential display and their expression analyzed using macroarrays. Nineteen cacao ESTs and 17 Trichoderma ESTs were chosen for real-time quantitative PCR analysis. Seven cacao ESTs were induced during colonization by the Trichoderma isolates. These included putative genes for ornithine decarboxylase (P1), GST-like proteins (P4), zinc finger protein (P13), wound-induced protein (P26), EF-calcium-binding protein (P29), carbohydrate oxidase (P59), and an unknown protein (U4). Two plant ESTs, extensin-like protein (P12) and major intrinsic protein (P31), were repressed due to colonization. The plant gene expression profile was dependent on the Trichoderma isolate colonizing the cacao seedling. The fungal ESTs induced in colonized cacao seedlings also varied with the Trichoderma isolate used. The most highly induced fungal ESTs were putative glucosyl hydrolase family 2 (F3), glucosyl hydrolase family 7 (F7), serine protease (F11), and alcohol oxidase (F19). The pattern of altered gene expression suggests a complex system of genetic cross talk occurs between the cacao tree and Trichoderma isolates during the establishment of the endophytic association.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

5.
Bacteria isolated from spent mushroom substrate (SMS) were evaluated for the suppression of Pyricularia grisea, the causal agent of gray leaf spot of perennial ryegrass (Lolium perenne) turf. Thirty-two of 849 bacterial isolates (3.8%) from SMS significantly inhibited the mycelial growth of P. grisea in vitro. Six bacterial isolates that afforded maximum inhibition of P. grisea were also refractory to Rhizoctonia solani, Rhizoctonia cerealis, Sclerotinia homoeocarpa, and Fusarium culmorum. Each of the six isolates was identified as Pseudomonas aeruginosa by fatty acid profile analysis. The biocontrol activity of the bacterial isolates was not compromised by a prolonged exposure to UV radiation in vitro. In controlled-environment chamber experiments, all 32 bacterial isolates were tested for suppression of gray leaf spot on Pennfine perennial ryegrass when applied as seed treatment or foliar sprays. Foliar applications of the bacteria (108 cfu/ml 0.1% carboxymethylcellulose), but not the seed treatment, significantly reduced disease severity and incidence. The three most efficient isolates from foliar application treatments, which were among the six bacterial isolates identified as P. aeruginosa, were further evaluated for suppression of gray leaf spot as a function of timing of application. The three isolates of P. aeruginosa suppressed gray leaf spot in perennial ryegrass in Cone-tainers when applied at 1, 3, and 7 days prior to inoculation with P. grisea both in controlled-environment chamber experiments, and in potted ryegrass plants maintained in the field. All application intervals, regardless of the bacterial isolate, provided significant reduction of gray leaf spot severity. Suppression of gray leaf spot by isolates of P. aeruginosa under controlled-environment chamber conditions was not different from that observed in potted ryegrass plants maintained in the field. In field experiments, an isolate of P. aeruginosa provided significant suppression of gray leaf spot when applied at 1, 7, and 14 days prior to inoculation with P. grisea. The bacterium proved effective against gray leaf spot of perennial ryegrass maintained as fairway and rough heights. These results indicate that P. aeruginosa may be a potential biocontrol agent for gray leaf spot of perennial ryegrass turf.  相似文献   

6.
Sixty-nine endospore-forming bacterial endophytes consisting of 15 different species from five genera were isolated from leaves, pods, branches, and flower cushions of Theobroma cacao as potential biological control agents. Sixteen isolates had in vitro chitinase production. In antagonism studies against cacao pathogens, 42% inhibited Moniliophthora roreri, 33% inhibited Moniliophthora perniciosa, and 49% inhibited Phytophthora capsici. Twenty-five percent of isolates inhibited the growth of both Moniliophthora spp., while 22% of isolates inhibited the growth of all three pathogens. Isolates that were chitinolytic and tested negative on Bacillus cereus agar were tested with in planta studies. All 14 isolates colonized the phyllosphere and internal leaf tissue when introduced with Silwet L-77, regardless of the tissue of origin of the isolate. Eight isolates significantly inhibited P. capsici lesion formation (p = 0.05) in detached leaf assays when compared to untreated control leaves. ARISA with bacilli specific primers amplified 21 OTUs in field grown cacao leaves, while eubacteria specific primers amplified 58 OTUs. ARISA analysis of treated leaves demonstrated that inundative application of a single bacterial species did not cause a long-term shift of native bacterial communities. This research illustrates the presence of endospore-forming bacterial endophytes in cacao trees, their potential as antagonists of cacao pathogens, and that cacao harbors a range of bacterial endophytes.  相似文献   

7.
Leaf spot disease caused by Cercospora beticola Sacc. (class Ascomycota, ord. Dothideales, fam. Mycosphaerellaceae) is the most destructive foliar disease of sugar beet. Commercial varieties are partially resistant and require repeated fungicide applications to obtain adequate protection levels; this has a high environmental impact and a risk of selecting resistant pathogen strains. A way of reducing chemical inputs could be to use biocontrol agents to replace or supplement fungicide treatments. A well-known class of biological control agents is represented by the fungi belonging to the Trichoderma genus (class Ascomycota, ord. Hypocreales, fam. Hypocreaceae), but there is a lack of information about its behaviour towards C. beticola. This study reports the evaluation of several Trichoderma isolates as possible biocontrol agents of this pathogen. Preliminary in vitro and in vivo assays led to the selection of two Trichoderma isolates characterised by their ability to reduce pathogen sporulation and antagonism towards the pathogen or competence for sugar beet phyllosphere. Repeated foliar applications of the liquid culture homogenate preceded by a single treatment of difenoconazole in 2 year trials under natural inoculum in field reduced the disease incidence and pathogen sporulation from the necrotic spots. An increase in sugar yield was also obtained by means of isolate Ba12/86-based treatments, perhaps due to induced resistance effects.  相似文献   

8.
The endophytic niches of plants are a rich source of microbes that can directly and indirectly promote plant protection, growth and development. The diversity of culturable endophytic fungi from stems and branches of Theobroma cacao (cacao) and Theobroma grandiflorum (cupua?u) trees growing in the Amazon region of Brazil was assessed. The collection of fungal endophytic isolates obtained was applied in field experiments to evaluate their potential as biocontrol agents against Phytophthora palmivora, the causal agent of the black-pod rot disease of cacao, one of the most important pathogens in cocoa-producing regions worldwide. The isolated endophytic fungi from 60 traditional, farmer-planted, healthy cacao and 10 cupua?u plants were cultured in PDA under conditions inducing sporulation. Isolates were classified based upon the morphological characteristics of their cultures and reproductive structures. Spore suspensions from a total of 103 isolates that could be classified at least up to genus level were tested against P. palmivora in pods attached to cacao trees in the field. Results indicated that ~70% of isolates showed biocontrol effects to a certain extent, suggesting that culturable endophytic fungal biodiversity in this system is of a mostly mutualistic type of interaction with the host. Eight isolates from genera Trichoderma (reference isolate), Pestalotiopsis, Curvularia, Tolypocladium and Fusarium showed the highest level of activity against the pathogen, and were further characterized. All demonstrated their endophytic nature by colonizing axenic cacao plantlets, and confirmed their biocontrol activity on attached pods trials by showing significant decrease in disease severity in relation to the positive control. None, however, showed detectable growth-promotion effects. Aspects related to endophytic biodiversity and host-pathogen-endophyte interactions in the environment of this study were discussed on the context of developing sustainable strategies for biological control of black-pod rot of cacao.  相似文献   

9.
The present study tested the ability of Bacillus amyloliquefaciens and Microbacterium oleovorans to reduce Fusarium verticillioides populations and fumonisin accumulation in the maize agroecosystem. The impact of releasing these biocontrol agents on rhizospheric bacterial and fungal groups was also evaluated through isolation and identification of culturable microorganisms. When applied as seed coatings at a concentration of 107 CFU ml−1 both agents were effective in reducing F. verticillioides counts and fumonisin B1 and B2 content from maize grains. Rhizospheric counts of the pathogen were also decreased by use of B. amyloliquefaciens at 107 CFU ml−1. Richness and diversity indexes calculated for bacteria and fungi inhabiting the rhizosphere of maize remained unchanged following the addition of both biocontrol agents to seeds. Our research is being continued to further characterize the bacterial and fungal isolates with additional field assays.  相似文献   

10.
Endophytic bacteria of eggplant, cucumber and groundnut were isolated from different locations of Goa, India. Based on in vitro screening, 28 bacterial isolates which effectively inhibited Ralstonia solanacearum, a bacterial wilt pathogen of the eggplant were characterized and identified. More than 50% of these isolates were Pseudomonas fluorescens in which a vast degree of variability was found to exist when biochemical characteristics were compared. In greenhouse experiments, the plants treated with Pseudomonas isolates (EB9, EB67), Enterobacter isolates (EB44, EB89) and Bacillus isolates (EC4, EC13) reduced the wilt incidence by more than 70%. All the selected isolates reduced damping off by more than 50% and improved the growth of seedlings in the nursery stage. Most of the selected antagonists produced an antibiotic, DAPG, which inhibited R. solanacearum under in vitro conditions and might have been responsible for reduced wilt incidence under in vivo conditions. Also production of siderophores and IAA in the culture medium by the antagonists was recorded, which could be involved in biocontrol and growth promotion in crop plants. From our study we conclude that Pseudomonas is the major antagonistic endophytic bacteria from eggplants which have the potential to be used as a biocontrol agent as well as plant growth-promoting rhizobacteria. Large scale field evaluation and detailed knowledge on antagonistic mechanism could provide an effective biocontrol solution for bacterial wilt of solanaceous crops.  相似文献   

11.
The majority of angiosperms produce hermaphrodite flowers, while a lesser number (20–30%) produce unisexual flowers. Little is known about the molecular biology of sex-determination in angiosperms, however, a few sex-determining genes have been cloned from the model system Zea mays. One of these genes is Tasselseed2 (Ts2) which has been shown to be involved in the arrest of developing pistils in male flowers. In this study, we sequenced a putative homologue of Ts2 in species of Bouteloua, a genus in the grass subfamily Chloridoideae. We found significant genetic variation at Ts2 in Bouteloua relative to other developmental genes characterized in maize and other grass species. We also found that in Bouteluoua, Ts2 is evolving non-neutrally in the hermaphrodite-flowered Bouteloua hirsuta while no difference from neutral expectation was detected at Ts2 in the monoecious/dioecious Bouteloua dimorpha. The putatively neutral gene Alcohol Dehydrogenase1 (Adh1) was also examined for the same species of Bouteloua, and no departure from neutral expectation was detected. Our results suggest that purifying selection may be acting on Ts2 in the hermaphrodite-flowered B. hirsuta while no evidence of selection was detected at Ts2 in the monoecious/dioecious B. dimorpha.  相似文献   

12.
The safety of biological control is a contentious issue. We suggest that constructing and analyzing food webs may be a valuable addition to standard biological control research techniques, as they offer a means of assessing the post-release safety of control agents. Using preliminary data to demonstrate the value of food webs in biocontrol programs, we quantified the extent to which a key agent has infiltrated natural communities in Australia and, potentially, impacted on non-target species. Using these data, we also demonstrate how food webs can be used to generate testable hypotheses regarding indirect interactions between introduced agents and non-target species. We developed food webs in communities invaded to varying degrees by an exotic weed, bitou bush, Chrysanthemoides monilifera ssp. rotundata, and a key biocontrol agent for this weed in Australia, the tephritid fly, Mesoclanis polana. Three food webs were constructed during springtime showing the interactions between plants, seed-feeding insects and their parasitoids. One food web was constructed in a plot of native Australian vegetation that was free of bitou bush (‘bitou-free’), another in a plot of Australian vegetation surrounded by an invasion of bitou bush (‘bitou-threatened’) and a third from a plot infested with a monoculture of bitou bush (‘bitou-infested’). The bitou-free web contained 36 species, the bitou-threatened plot 9 species and the bitou-infested web contained 6 species. One native Australian herbivore attacked the seeds of bitou bush. M. polana, a seed-feeding fly, was heavily attacked by native parasitoids, these being more abundant than the parasitoids feeding on the native seed feeders. A surprising result is that none of the three species of native parasitoids reared from M. polana were reared from any of the native herbivores. The food webs revealed how a highly host-specific biocontrol agent, such as M. polana has the potential to change community structure by increasing the abundance of native parasitoids. The webs also suggest that indirect interactions between M. polana and native non-target species are possible, these been mediated by shared parasitoids. The experiments necessary to determine the presence of these interactions are outlined.  相似文献   

13.
The cassava green mite (CGM), Mononychellus tanajoa, a native of South America was accidentally introduced into Africa where it causes serious crop losses. The possibility of introducing classical biological agents from the native home of CGM into Africa was investigated. Thus, we conducted a series of laboratory assays of the native fungal pathogens, Neozygites tanajoae from Brazil and Neozygites floridana from Colombia and Brazil, and compared them with N. tanajoae isolates from Benin. Infectivity of both fungal species, was assayed against the twospotted spider mite, Tetranychus urticae, and against the red mite, Oligonychus gossypii. Pathogenicity against CGM and host range studies were conducted by transferring adult females of each mite species to leaf discs containing sporulated cadavers with a halo of conidia of each fungal isolate. All isolates caused some degree of infectivity to CGM. None of the isolates of N. floridana and N. tanajoae tested were pathogenic to O. gossypii, and only two isolates infected T. urticae. Most isolates from Brazil were highly virulent and infected only CGM. Sixteen N. tanajoae isolates caused more than 89% mortality and more than 62% of the CGM became mummified. A mummified CGM is characteristically a swollen, brown fungus-killed mite that has great potential to produce conidia. However, high mortality was not always associated with high mummification. The median mummification time ranged from 4.4 to 6.7 days. Five Brazilian isolates caused >75% mummification with a median mummification time <5 days. Isolates that cause high mummification in a short period of time would be more likely to cause epizootics and to establish in the new environment. Therefore, these isolates would be the best candidates for introduction to Africa.  相似文献   

14.
Bacterial wilt (Ralstonia solanacearum) of tomato, Lycopersicon esculentum, causes a considerable amount of damage to tomato in Southern China. Biological control is one of the more promising approaches to reduce the disease incidence and yield losses caused by this disease. Based on antagonistic activity against R. solanacearum and three soil-borne fungal pathogens as well as biocontrol efficacy in the greenhouse, two bacterial strains Xa6 (Acinetobacter sp.) and Xy3 (Enterobacter sp.) were selected out of fourteen candidates as potential biocontrol agents. In order to find a suitable antagonist inoculation method, we compared the methods of root-dipping with soil-drenching in the aspects including rhizocompetence, biocontrol efficacy, and effect of promoting plant growth under greenhouse conditions. The drenching treatment resulted in a higher biocontrol efficacy and plant-yield increase, and this method was also easier to operate in the field on a large scale. Field trials were conducted for further evaluation of these two antagonistic strains. In both greenhouse and field experiments, the strain Xy3 had a better control effect against bacterial wilt than Xa6 did, while Xa6 caused higher biomass or yield increases. As recorded on the 75th day after treatment in two field experiments, biocontrol efficacy of Xy3 was about 65% in both field trials, and the yield increases caused by Xa6 were 32.4 and 40.7%, respectively, in the two trials. This is the first report of an Acinetobacter sp. strain used as a BCA against Ralstonia wilt of tomato.  相似文献   

15.
Trichoderma species are usually considered soil organisms that colonize plant roots, sometimes forming a symbiotic relationship. Recent studies demonstrate that Trichoderma species are also capable of colonizing the above ground tissues of Theobroma cacao (cacao) in what has been characterized as an endophytic relationship. Trichoderma species can be re-isolated from surface sterilized cacao stem tissue, including the bark and xylem, the apical meristem, and to a lesser degree from leaves. SEM analysis of cacao stems colonized by strains of four Trichoderma species (Trichoderma ovalisporum-DIS 70a, Trichoderma hamatum-DIS 219b, Trichoderma koningiopsis-DIS 172ai, or Trichoderma harzianum-DIS 219f) showed a preference for surface colonization of glandular trichomes versus non-glandular trichomes. The Trichoderma strains colonized the glandular trichome tips and formed swellings resembling appresoria. Hyphae were observed emerging from the glandular trichomes on surface sterilized stems from cacao seedlings that had been inoculated with each of the four Trichoderma strains. Fungal hyphae were observed under the microscope emerging from the trichomes as soon as 6 h after their isolation from surface sterilized cacao seedling stems. Hyphae were also observed, in some cases, emerging from stalk cells opposite the trichome head. Repeated single trichome/hyphae isolations verified that the emerging hyphae were the Trichoderma strains with which the cacao seedlings had been inoculated. Strains of four Trichoderma species were able to enter glandular trichomes during the colonization of cacao stems where they survived surface sterilization and could be re-isolated. The penetration of cacao trichomes may provide the entry point for Trichoderma species into the cacao stem allowing systemic colonization of this tissue.  相似文献   

16.
The cost of rearing the root-feeding weevil, Mogulones cruciger Herbst, to control the invasive weed houndstongue (Cynoglossum officinale L.) was determined for two managed production methods. Production in an insectary setting provides control over rearing and all adult weevils that emerge can be collected, but required facility investment and high labor input. Mass-rearing in a managed ‘field crop’ setting required less facilities and labor while the insects were multiplying, but capture of the emerged adults was challenging and labor intensive. Estimated per adult weevil production costs were $CDN 2.65 for the insectary approach, and from $CDN 0.10 to $CDN 0.14 for mass-rearing in the managed field crop setting. Even though collection of adult weevils in the field crop production system was challenging, commercial production of M. cruciger should consider use of this mass-rearing method because of its lower cost.  相似文献   

17.
Honey bees are important pollinators of commercial blueberries in the southeastern United States, and blueberry producers often use supplemental bees to achieve adequate fruit set. However, honey bees also vector the plant pathogenic fungus Monilinia vaccinii-corymbosi which infects open blueberry flowers through the gynoecial pathway causing mummy berry disease. Here, we report the results of a 3-year field study to test the hypothesis that using bee hives equipped with dispensers containing the biocontrol product Serenade, a commercial formulation of the bacterium Bacillus subtilis which has shown activity against flower infection by M. vaccinii-corymbosi in laboratory experiments, can reduce mummy berry disease incidence when honey bees are used as pollinators in blueberries. Individual honey bees carried 5.1–6.4 × 105 colony-forming units (CFU) of B. subtilis when exiting hive-mounted dispensers with Serenade. On caged rabbiteye blueberry bushes in the field, population densities of B. subtilis vectored by honey bees reached a carrying capacity of <103 CFU per flower stigma within 2 days of exposure, and there was a highly significant non-linear relationship between B. subtilis populations per stigma and bee activity, expressed as number of legitimate flower visits per time interval per cage (R = 0.6928, P < 0.0001, n = 32). Honey bee density (1600 or 6400 individuals per 5.8-m3 cage) and Serenade treatment (presence or absence of the product in hive-mounted dispensers) significantly (P < 0.05) affected the incidence of fruit mummification on caged bushes, whereby increasing bee density increased disease incidence and application of Serenade reduced disease levels. Taken together, results of this study suggest that use of a hive-dispersed biocontrol product such as Serenade as a supplement during pollination can reduce the risk of mummy berry disease. This may be a prudent practice that optimizes the benefits to pollination of high bee densities while reducing the associated disease-vectoring risk.  相似文献   

18.
Fusarium head blight (FHB), caused by Fusarium graminearum (= Gibberella zeae), is a destructive disease of wheat for which biological controls are needed. Lysobacter enzymogenes strain C3, a bacterial antagonist of fungal pathogens via lytic enzymes and induced resistance, was evaluated in this study for control of FHB. In greenhouse experiments, chitin broth cultures of C3 reduced FHB severity to <10% infected spikelets as compared to >80% severity in the controls in some experiments. C3 broth cultures heated to inactivate cells and lytic enzymes, but retaining the elicitor factor for induced resistance, also were effective in reducing FHB severity, suggesting induced resistance is one mechanism of action. C3 broth cultures also were effective when applied in highly diluted form and when applied 1 week prior to pathogen inoculation. When applied to 8 cultivars of hard red spring wheat in the greenhouse, C3 treatments reduced FHB in 5 cultivars but not in the others. These findings also are consistent with induced resistance. Protection offered by C3 treatments, however, was not systemic and required that C3 be applied uniformly to all susceptible florets. Field tests were conducted in South Dakota and Nebraska to evaluate the efficacy of C3 chitin broth cultures in spring and winter wheat, respectively. In experiments involving two hard red spring wheat cultivars, treatment with C3 reduced FHB severity in ‘Russ’ but not in ‘Ingot’. In three other field experiments comparing C3, the fungicide tebuconazole, and the combination of C3 and tebuconazole, treatments with the bacterial culture alone and the fungicide alone were inconsistent across experiments, each treatment being ineffective in controlling FHB in one experiment. The biocontrol agent–fungicide combination was more consistently effective, reducing FHB incidence or severity in all three experiments. Thus, the potential for using L. enzymogenes C3 as a biological control agent for FHB was demonstrated along with a number of factors that might affect control efficacy in the field.  相似文献   

19.
Exploratory activities were done in Syria, Turkey, Iran, Uzbekistan, Kazakhstan, The Kyrghyz Republic, and Russia to locate entomopathogenic fungi of Eurygaster integriceps. Isolates from the entomopathogenic genera Beauveria, Paecilomyces, and Verticillium were collected. Beauveria bassiana was the most commonly recovered species. Thirty-one isolates of the 221 recovered were examined at 20, 25, 30, and 35 °C for 20 days for growth and sporulation. Growth and sporulation were generally highest at 25 °C. None of the isolates grew at 35 °C, and at 30 °C growth was retarded with no conidia being produced. Single- and multiple-concentration bioassays were conducted on greenhouse-grown wheat plants and in pine litter to evaluate virulence of fungi from several sources to E. integriceps. When tested at a single concentration, mortality after 15 days ranged from 66 to >95% in the litter assays and 50 to 91% in the plant assays. There was a distinct concentration response for most of the isolates tested in the multiple-concentration assay, particularly in the in-litter environment. In litter, mortality tended to develop earlier than in on-plant assays. Several isolates of B. bassiana and one Metarhizium anisopliae displayed consistently high virulence against E. integriceps and were more virulent than two commercial strains. Our results demonstrate the potential of entomopathogenic fungi for management of E. integriceps in overwintering sites and in wheat fields.  相似文献   

20.
Bacterial leaf blight (BB) is a worldwide destructive rice disease caused by pathogen Xanthomonas oryzae pv. oryzae (Xoo). A novel strain of Lysobacter antibioticus, which was isolated from the rhizosphere of rice in Yunnan Province of China, can significantly inhibit the growth of various phytopathogenic bacteria and fungi, especially BB pathogen Xoo. In greenhouse experiments, whole bacterial broth culture (WBC) of strain 13-1 was more effective in reducing BB than other components of the culture, with disease suppression efficiency up to 69.7%. However, bacterial cells re-suspended in water, cell-free culture extracts, and heated cultures also significantly reduced BB severity. Suppression efficiencies ranged from 79.0% to 61.8% for undiluted to 100-fold dilution treatments and from 57.6% to 31.7% when the WBC of strain 13-1 (108 CFU/mL) was applied at 3 days and 7 days prior to pathogen inoculation, respectively. In three field trials, strain 13-1 reduced BB incidence by 73.5%, 78.3%, and 59.1%, respectively. Disease suppression by strain 13-1 varied significantly among different rice cultivars, although efficacy was not directly related to the susceptibility level of the cultivars. Efficacy of biocontrol was also affected by different pathogen isolates, with some isolates of Xoo being more sensitive to 13-1 suppression than others. These results suggest that antibiotics and density of colonization on leaves may be involved for biological control of rice BB by strain 13-1. To our knowledge, this is the first report of L. antibioticus being a potential biocontrol agent for rice bacterial blight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号