首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胡帅  王芳展  刘振宁  刘亚培  余小林 《遗传》2012,34(5):560-572
脱落酸(ABA)在各个植物生长发育阶段以及植物对生物与非生物胁迫的响应过程中都发挥着重要的作用。最近研究表明, 在ABA信号转导途径中有3种核心组份:ABA受体PYR/PYL/RCAR蛋白、负调控因子2C类蛋白磷酸酶(PP2C)和正调控因子SNF1相关的蛋白激酶2(SnRK2), 它们共同组成了一个双重负调控系统-- PYR/PYL/RCAR-| PP2C-| SnRK2来调控ABA信号转导及其下游反应, 且3种核心组份在植物体内的结合方式受时空和生化等因素的影响, 通过特定组合形成的ABA信号转导复合体介导特定的ABA信号反应。文章就PYR/PYL/RCAR蛋白介导的植物ABA信号识别与转导途径的分子基础及其调控机制, 以及PYR/PYL/RCAR-PP2C-SnRK2参与的ABA信号调控网络等研究进展做一概述, 并对该领域今后的研究进行了展望。  相似文献   

2.
PYR/PYL/RCAR蛋白介导植物ABA的信号转导   总被引:1,自引:0,他引:1  
Hu S  Wang FZ  Liu ZN  Liu YP  Yu XL 《遗传》2012,34(5):560-572
脱落酸(ABA)在各个植物生长发育阶段以及植物对生物与非生物胁迫的响应过程中都发挥着重要的作用。最近研究表明,在ABA信号转导途径中有3种核心组份:ABA受体PYR/PYL/RCAR蛋白、负调控因子2C类蛋白磷酸酶(PP2C)和正调控因子SNF1相关的蛋白激酶2(SnRK2),它们共同组成了一个双重负调控系统——PYR/PYL/RCAR—|PP2C—|SnRK2来调控ABA信号转导及其下游反应,且3种核心组份在植物体内的结合方式受时空和生化等因素的影响,通过特定组合形成的ABA信号转导复合体介导特定的ABA信号反应。文章就PYR/PYL/RCAR蛋白介导的植物ABA信号识别与转导途径的分子基础及其调控机制,以及PYR/PYL/RCAR—PP2C—SnRK2参与的ABA信号调控网络等研究进展做一概述,并对该领域今后的研究进行了展望。  相似文献   

3.
植物激素脱落酸(abscisic acid,ABA)在植物的生长、发育和胁迫反应方面起重要的调控作用,其信号转导通路由4个核心组分共同组成一个双重负调控系统(PYR/PYL/RCAR—| PP2C—| SnRK2—ABF/AREB),调控ABA应答反应。本文在综述和分析ABA信号通路4个核心组分的起源与进化的基础上,初步提出ABA信号通路的起源与进化路径:A类PP2C、第Ⅲ亚类SnRK2以及转录因子AREB/ABF在水生植物轮藻中已经进化产生,当陆生植物进化产生ABA受体PYR/PYL/RCAR后,即与其它3个组分形成完整的ABA信号通路。在植物进化过程中,ABA信号通路4个核心组分各家族成员的数量(亚类)呈递增趋势。  相似文献   

4.
Abscisic acid (ABA) mediates resistance to abiotic stress and controls developmental processes in plants. The group‐A PP2Cs, of which ABI1 is the prototypical member, are protein phosphatases that play critical roles as negative regulators very early in ABA signal transduction. Because redundancy is thought to limit the genetic dissection of early ABA signalling, to identify redundant and early ABA signalling proteins, we pursued a proteomics approach. We generated YFP‐tagged ABI1 Arabidopsis expression lines and identified in vivo ABI1‐interacting proteins by mass‐spectrometric analyses of ABI1 complexes. Known ABA signalling components were isolated including SnRK2 protein kinases. We confirm previous studies in yeast and now show that ABI1 interacts with the ABA‐signalling kinases OST1, SnRK2.2 and SnRK2.3 in plants. Interestingly, the most robust in planta ABI1‐interacting proteins in all LC‐MS/MS experiments were nine of the 14 PYR/PYL/RCAR proteins, which were recently reported as ABA‐binding signal transduction proteins, providing evidence for in vivo PYR/PYL/RCAR interactions with ABI1 in Arabidopsis. ABI1–PYR1 interaction was stimulated within 5 min of ABA treatment in Arabidopsis. Interestingly, in contrast, PYR1 and SnRK2.3 co‐immunoprecipitated equally well in the presence and absence of ABA. To investigate the biological relevance of the PYR/PYLs, we analysed pyr1/pyl1/pyl2/pyl4 quadruple mutant plants and found strong insensitivities in ABA‐induced stomatal closure and ABA‐inhibition of stomatal opening. These findings demonstrate that ABI1 can interact with several PYR/PYL/RCAR family members in Arabidopsis, that PYR1–ABI1 interaction is rapidly stimulated by ABA in Arabidopsis and indicate new SnRK2 kinase‐PYR/PYL/RCAR interactions in an emerging model for PYR/PYL/RCAR‐mediated ABA signalling.  相似文献   

5.
Clade A protein phosphatases type 2C (PP2Cs) are negative regulators of abscisic acid (ABA) signaling that are inhibited in an ABA-dependent manner by PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) intracellular receptors. We provide genetic evidence that a previously uncharacterized member of this PP2C family in Arabidopsis (Arabidopsis thaliana), At5g59220, is a negative regulator of osmotic stress and ABA signaling and that this function was only apparent when double loss-of-function mutants with pp2ca-1/ahg3 were generated. At5g59220-green fluorescent protein and its close relative PP2CA-green fluorescent protein showed a predominant nuclear localization; however, hemagglutinin-tagged versions were also localized to cytosol and microsomal pellets. At5g59220 was selectively inhibited by some PYR/PYL ABA receptors, and close relatives of this PP2C, such as PP2CA/ABA-HYPERSENSITIVE GERMINATION3 (AHG3) and AHG1, showed a contrasting sensitivity to PYR/PYL inhibition. Interestingly, AHG1 was resistant to inhibition by the PYR/PYL receptors tested, which suggests that this seed-specific phosphatase is still able to regulate ABA signaling in the presence of ABA and PYR/PYL receptors and therefore to control the highly active ABA signaling pathway that operates during seed development. Moreover, the differential sensitivity of the phosphatases At5g59220 and PP2CA to inhibition by ABA receptors reveals a functional specialization of PYR/PYL ABA receptors to preferentially inhibit certain PP2Cs.  相似文献   

6.
The phytohormone abscisic acid (ABA) regulates many key processes in plants, such as seed germina- tion, seedling growth, and abiotic stress tolerance. In recent years, a minimal set of core components of a major ABA signaling pathway has been discovered. These components include a RCAR/PYR/PYL family of ABA receptors, a group of PP2C phosphatases, and three SnRK2 kinases. However, how the interactions between the receptors and their targets are regulated by other proteins remains largely unknown. In a companion paper published in this issue, we showed that ROP11, a member of the plant- specific Rho-like small GTPase family, negatively regulates multiple ABA responses in Arabidopsis. The current work demonstrated that the constitutively active ROP11 (CA-ROP11) can modulate the RCAR1/PYL9-mediated ABA signaling pathway based on reconstitution assays in Arabidopsis thaliana protoplasts. Furthermore, using luciferase complementation imaging, yeast two-hybrid assays, co- immunoprecipitation assays in Nicotiana benthamiana and bimolecular fluorescence complementation assays, we demonstrated that CA-ROP11 directly interacts with ABI1, a signaling component downstream of RCAR1/PYL9. Finally, we provided biochemical evidence that CA-ROP11 protects ABI1 phosphatase activity from inhibition by RCAR1/PYL9 and thus negatively regulates ABA signaling in plant cells. A model of how ROP11 acts to negatively regulate ABA signaling is presented.  相似文献   

7.
The phytohormone abscisic acid (ABA), an important bioactive compound in plants, is implicated in several essential processes such as development and the abiotic stress response. Many components have been reported to have roles in these processes. Although 2C-type protein phosphatases (PP2C) and SNF1-related protein kinases2 (SnRK2) family are known to be important signal mediators, the molecular mechanisms by which these components regulate the ABA signaling pathway have not been elucidated. Recent identification of soluble ABA receptors, PYR/PYL/RCAR, has provided a major breakthrough in understanding the signaling mechanisms of ABA and revealed the importance of PP2Cs. In addition, the physical, biochemical and physiological connections between PP2C and SnRK2 have been clearly demonstrated. Taken together, the molecular basis of the major ABA signaling pathway has been established, from perception to gene expression. In this addendum, we discuss this emerging ABA signaling pathway, which has a conventional protein phosphorylation/dephosphorylation regulatory circuit and consider its physiological and functional relevance.Key words: ABA receptor, abscisic acid, PP2C, signal transduction, SnRK2, plant hormone, phosphoarylation  相似文献   

8.
Jin-Gui Chen (Corresponding author) Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg(2+) -chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RCAR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.  相似文献   

9.
Evolution of abscisic acid synthesis and signaling mechanisms   总被引:2,自引:0,他引:2  
  相似文献   

10.
Membrane‐delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single‐subunit RING‐type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C‐terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1–PYL4 and RSL1–PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half‐life, protein interactions or trafficking.  相似文献   

11.
12.
13.
The plant hormone abscisic acid (ABA) plays a central role in the regulation of stomatal movements under water-deficit conditions. The identification of ABA receptors and the ABA signaling core consisting of PYR/PYL/RCAR ABA receptors, PP2C protein phosphatases and SnRK2 protein kinases has led to studies that have greatly advanced our knowledge of the molecular mechanisms mediating ABA-induced stomatal closure in the past decade. This review focuses on recent progress in illuminating the regulatory mechanisms of ABA signal transduction, and the physiological importance of basal ABA signaling in stomatal regulation by CO2 and, as hypothesized here, vapor-pressure deficit. Furthermore, advances in understanding the interactions of ABA and other stomatal signaling pathways are reviewed here. We also review recent studies investigating the use of ABA signaling mechanisms for the manipulation of stomatal conductance and the enhancement of drought tolerance and water-use efficiency of plants.  相似文献   

14.
15.
Ben-Ari G 《Plant cell reports》2012,31(8):1357-1369
The phytohormone abscisic acid (ABA) affects a wide range of stages of plant development as well as the plant's response to biotic and abiotic stresses. Manipulation of ABA signaling in commercial crops holds promising potential for improving crop yields. Several decades of research have been invested in attempts to identify the first components of the ABA signaling cascade. It was only in 2009, that two independent groups identified the PYR/PYL/RCAR protein family as the plant ABA receptor. This finding was followed by a surge of studies on ABA signal transduction, many of them using Arabidopsis as their model. The ABA signaling cascade was found to consist of a double-negative regulatory mechanism assembled from three protein families. These include the ABA receptors, the PP2C family of inhibitors, and the kinase family, SnRK2. It was found that ABA-bound PYR/RCARs inhibit PP2C activity, and that PP2Cs inactivate SnRK2s. Researchers today are examining how the elucidation of the ABA signaling cascade in Arabidopsis can be applied to improvements in commercial agriculture. In this article, we have attempted to review recent studies which address this issue. In it, we discuss various approaches useful in identifying the genetic and protein components involved. Finally, we suggest possible commercial applications of genetic manipulation of ABA signaling to improve crop yields.  相似文献   

16.
17.
Proteins in the PYR/PYL/RCAR family (PYLs) are known as receptors for the phytohormone ABA. Upon ABA binding, PYL adopts a conformation that allows it to interact with and inhibit clade A protein phosphatase 2Cs (PP2Cs), which are known as the co-receptors for ABA. Inhibition of the PP2Cs then leads to the activation of the SnRK2 family protein kinases that phosphorylate and activate downstream effectors in ABA response pathways. The PYL family has 14 members in Arabidopsis, 13 of which have been demonstrated to function as ABA receptors. The function of PYL13, a divergent member of the family, has been enigmatic. We report here that PYL13 differs from the other PYLs in three key residues that affect ABA perception, and mutations in these three residues can convert PYL13 into a partially functional ABA receptor. Transgenic plants overexpressing PYL13 show increased ABA sensitivity in seed germination and postgermination seedling establishment as well as decreased stomatal conductance, increased water-use efficiency, accelerated stress-responsive gene expression, and enhanced drought resistance. pyl13 mutant plants are less sensitive to ABA inhibition of postgermination seedling establishment. PYL13 interacts with and inhibits some members of clade A PP2Cs (PP2CA in particular) in an ABA-independent manner. PYL13 also interacts with the other PYLs and antagonizes their function as ABA receptors. Our results show that PYL13 is not an ABA receptor but can modulate the ABA pathway by interacting with and inhibiting both the PYL receptors and the PP2C co-receptors.  相似文献   

18.
Abscisic acid (ABA) is a plant hormone with important functions in stress protection and physiology. Recently, the PYR/PYL/RCAR family of intracellular ABA receptors was identified. These receptors directly link ABA perception to a canonical ABA signaling pathway, in which ABA-bound receptors bind and inhibit type 2C phosphatases. High resolution crystal structures of members of this family have been solved in all relevant states: as apo receptors, bound to ABA, and as receptor-ABA-phosphatase complexes. Together, these structures provide a detailed gate-latch-lock mechanism of ABA recognition, receptor-PP2C interaction, and inhibition of the PP2C phosphatase activity and provide a basis for the design of synthetic ABA agonists for stress protection of crop plants.  相似文献   

19.
The plant hormone abscisic acid (ABA) is involved in regulating a number of major processes such as seed dormancy, seedling development, and biotic and abiotic stress responses. The function and effect of ABA on pathogens are still unclear, but the roles of ABA in seed germination and abiotic stress responses have been well characterized. Abiotic stresses elevate ABA levels and activate ABA signaling; thus, inducing a variety of responses, including the expression of stress-related genes and stomatal closure. The past decade has witnessed many significant advances in our understanding of ABA signal transduction due to application of a combination of approaches including genetics, biochemistry, electrophysiology, and chemical genetics. A number of proteins associated with the ABA signal transduction pathway such as PYR/PYL/RCAR family of START proteins, have been identified. These ABA receptors bind to ABA and positively regulate ABA signaling via inactivation of PP2C phosphatase activity, which inhibits SnRK2-type kinases by direct interaction and dephosphorylation. Additionally, SnRK2-type kinases and PP2Cs interact with one another and with other components of ABA signaling and function as positive and negative ABA regulators, respectively. In this review, we focus on ABA function to abiotic stresses and highlight each component in relation to ABA and its interactions.  相似文献   

20.
It is known that the clade A protein phosphatase 2Cs (PP2Cs), including ABI1 and ABI2 and other PP2C members, are key players that function directly downstream of the PYR/PYL/RCAR abscisic acid (ABA) receptors. Here, identification of a crucial site for function of ABI2 protein phosphatase in ABA signalling is reported. It was observed that a calcium-dependent protein kinase (CDPK) phosphorylation site-like motif (CPL) in the ABI2 molecule is required for the interactions of ABI2 with the two members of the ABA receptors PYL5 and PYL9 and with a downstream protein kinase SnRK2.6, and for the catalytic activity of ABI2 in vitro, as well as for the response of ABI2 to the ABA receptors PYL5/PYL9 in relation to the ABA receptor-induced inhibition of the ABI2 phosphatase activity. Further, genetic evidence was provided to demonstrate that this CPL is required for the function of ABI2 to mediate ABA signalling. These data reveal that this CPL is an important site necessary for both the phosphatase activity of ABI2 and the functional interaction between ABI2 and PYL5/9 ABA receptors, providing new information to understand primary events of ABA signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号