首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
Induced pluripotent stem (iPS) cell technology demonstrates that somatic cells can be reprogrammed to a pluripotent state by over-expressing four reprogramming factors. This technology has created an interest in deriving iPS cells from domesticated animals such as pigs, sheep and cattle. Moloney murine leukemia retrovirus vectors have been widely used to generate and study mouse iPS cells. However, this retrovirus system infects only mouse and rat cells, which limits its use in establishing iPS cells from other mammals. In our study, we demonstrate a novel retrovirus strategy to efficiently generate porcine iPS cells from embryonic fibroblasts. We transfected four human reprogramming factors (Oct4, Sox2, Klf4 and Myc) into fibroblasts in one step by using a VSV-G envelope-coated pantropic retrovirus that was easily packaged by GP2-293 cells. We established six embryonic stem (ES)-like cell lines in human ES cell medium supplemented with bFGF. Colonies showed a similar morphology to human ES cells with a high nuclei-cytoplasm ratio and phase-bright flat colonies. Porcine iPS cells could form embryoid bodies in vitro and differentiate into the three germ layers in vivo by forming teratomas in immunodeficient mice.  相似文献   

4.
Takahashi K  Yamanaka S 《Cell》2006,126(4):663-676
Differentiated cells can be reprogrammed to an embryonic-like state by transfer of nuclear contents into oocytes or by fusion with embryonic stem (ES) cells. Little is known about factors that induce this reprogramming. Here, we demonstrate induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions. Unexpectedly, Nanog was dispensable. These cells, which we designated iPS (induced pluripotent stem) cells, exhibit the morphology and growth properties of ES cells and express ES cell marker genes. Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development. These data demonstrate that pluripotent stem cells can be directly generated from fibroblast cultures by the addition of only a few defined factors.  相似文献   

5.
6.
In vitro reprogramming of somatic cells into a pluripotent embryonic stem cell-like state has been achieved through retroviral transduction of murine fibroblasts with Oct4, Sox2, c-myc and Klf4. In these experiments, the rare 'induced pluripotent stem' (iPS) cells were isolated by stringent selection for activation of a neomycin-resistance gene inserted into the endogenous Oct4 (also known as Pou5f1) or Nanog loci. Direct isolation of pluripotent cells from cultured somatic cells is of potential therapeutic interest, but translation to human systems would be hindered by the requirement for transgenic donors in the present iPS isolation protocol. Here we demonstrate that reprogrammed pluripotent cells can be isolated from genetically unmodified somatic donor cells solely based upon morphological criteria.  相似文献   

7.
Induced pluripotent stem(iPS)cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs)are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentivirai expressed reprogramming factors.In our study,iPS cells expressed common pluripotency markers,displayed human embryonic stern cells(hESCs)morphology and unmethylated promoters of NANOG and OCT4.These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.  相似文献   

8.
9.
10.
11.
Cellular reprogramming is a rapidly developing technology by which somatic cells are turned into pluripotent stem cells or other somatic cell types through expression of specific combinations of genes. This allows for the generation of patient-specific cell lines that can serve as tools for understanding disease pathogenesis, for drug screens and, potentially, for cell replacement therapies. Several cellular models of neurological disorders based on induced pluripotent cells (iPS cells) have been developed, and iPS-derived neurons are being explored as candidates for transplantation. Recent findings show that neurons can also be induced directly from embryonic and postnatal somatic cells by expression of defined combinations of genes. This conversion does not occur through a pluripotent stem cell stage, which eliminates the risk for tumor formation. Here, we demonstrate for the first time that functional neurons can be generated via direct conversion of fibroblasts also from adult individuals. Thus, this technology is an attractive alternative to iPS cells for generating patient- and disease-specific neurons suitable for disease modeling and autologous transplantation.  相似文献   

12.
Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1   总被引:1,自引:0,他引:1  
Moon JH  Heo JS  Kim JS  Jun EK  Lee JH  Kim A  Kim J  Whang KY  Kang YK  Yeo S  Lim HJ  Han DW  Kim DW  Oh S  Yoon BS  Schöler HR  You S 《Cell research》2011,21(9):1305-1315
  相似文献   

13.
14.
Induced pluripotent stem cells (iPS cells) are somatic cells that have been reprogrammed to a pluripotent state by the introduction of specific factors. They can be generated from cells of different origins such as fibroblasts, keratinocytes, hepatocytes and blood. iPS cells are similar to embryonic stem cells in several aspects such as morphology, expression of pluripotency markers and the capacity to develop teratomas; tumors containing cells of the three germ layers. As pluripotent stem cells they can be differentiated into several lineages including neuronal, cardiac and blood cells. Recently, several groups have successfully generated patient-specific iPS cells from donors suffering different disorders and differentiated them into the cell type affected by the disease. These new human cell-based models cannot only be used to study the dynamics of diseases but also as systems to screen new drugs. Moreover, iPS cells promise to be good candidates for regenerative medicine.  相似文献   

15.
Increasing evidence suggests that islet cell transplantation for patients with type I diabetes holds great promise for achieving insulin independence. However, the extreme shortage of matched organ donors and the necessity for chronic immunosuppression has made it impossible for this treatment to be used for the general diabetic population. Recent success in generating insulin-secreting islet-like cells from human embryonic stem (ES) cells, in combination with the success in deriving human ES cell-like induced pluripotent stem (iPS) cells from human fibroblasts by defined factors, have raised the possibility that patient-specific insulin-secreting islet-like cells might be derived from somatic cells through cell fate reprogramming using defined factors. Here we confirm that human ES-like iPS cells can be derived from human skin cells by retroviral expression of OCT4, SOX2, c-MYC, and KLF4. Importantly, using a serum-free protocol, we successfully generated insulin-producing islet-like clusters (ILCs) from the iPS cells under feeder-free conditions. We demonstrate that, like human ES cells, skin fibroblast-derived iPS cells have the potential to be differentiated into islet-like clusters through definitive and pancreatic endoderm. The iPS-derived ILCs not only contain C-peptide-positive and glucagon-positive cells but also release C-peptide upon glucose stimulation. Thus, our study provides evidence that insulin-secreting ILCs can be generated from skin fibroblasts, raising the possibility that patient-specific iPS cells could potentially provide a treatment for diabetes in the future.  相似文献   

16.
17.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。  相似文献   

18.
19.
Reprogramming of somatic cells to a pluripotent state holds huge potentials for regenerative medicine. However, a debate over which method is better, somatic cell nuclear transfer (SCNT) or induced pluripotent stem (iPS) cells, still persists. Both approaches have the potential to generate patient-specific pluripotent stem cells for replacement therapy. Yet, although SCNT has been successfully applied in various vertebrates, no human pluripotent stem cells have been generated by SCNT due to technical, legal and ethical difficulties. On the other hand, human iPS cell lines have been reported from both healthy and diseased individuals. A recent study reported the generation of triploid human pluripotent stem cells by transferring somatic nuclei into oocytes, a variant form of SCNT. In this essay, we discuss this progress and the potentials of these two reprogramming approaches for regenerative medicine.  相似文献   

20.
Induction of pluripotent stem cells from human fibroblasts has been achieved by the ectopic expression of two different sets of four genes. However, the mechanism of the pluripotent stem cell induction has not been elucidated. Here we identified a marked heterogeneity in colonies generated by the four-gene (Oct3/4, Sox2, c-Myc, and Klf4) transduction method in human neonatal skin-derived cells. The four-gene transduction gave a higher probability of induction for archetypal pluripotent stem cell marker genes (Nanog, TDGF, and Dnmt3b) than for marker genes that are less specific for pluripotent stem cells (CYP26A1 and TERT) in primary induction culture. This tendency may reflect the molecular mechanism underlying the induction of human skin-derived cells into pluripotent stem cells. Among the colonies induced by the four-gene transduction, small cells with a high nucleus-to–cytoplasm ratio could be established by repeated cloning. Subsequently established cell lines were similar to human embryonic stem cells as well as human induced pluripotent stem (iPS) cells derived from adult tissue in morphology, gene expression, long-term self-renewal ability, and teratoma formation. Genome-wide single-nucleotide polymorphism array analysis of the human iPS cell line indicates that the induction process did not induce DNA mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号