首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
目的通过比较亲骨转移乳腺癌细胞(MDA-MB-231BO)和亲代乳腺癌细胞(MDA-MB-231)的生长曲线和致瘤性,初步探讨MDA-MB-231BO细胞的生物学特性。方法MTT法测定两种细胞的生长曲线,并将两种乳腺癌细胞接种于裸鼠腋窝处皮下,建立乳腺癌细胞异种移植瘤动物模型,30 d后处死裸鼠,肿瘤组织及相关脏器官做病理检查。结果MTT法测得MDA-MB-231BO细胞生长速率高于MDA-MB-231细胞。接种两种乳腺癌细胞的裸鼠均长出肿瘤,成瘤率为100%。病理检查符合人乳腺癌细胞特征,MDA-MB-231BO组瘤体体积明显大于MDA-MB-231组(P〈0.05)。结论MDA-MB-231BO细胞生长速率高于MDA-MB-231细胞,而且MDA-MB-231BO在裸鼠体内的致瘤性强于MDA-MB-231。  相似文献   

2.
目的:探讨低迁移表型的乳腺癌细胞MCF-7和高迁移表型的乳腺癌细胞MDA-MB-231中血小板衍生生长因子β启动子的基础活性及转录调控差异。方法:Real-Time PCR,Weastern blot等技术检测PDGFRβ在2株细胞中的转录和表达差异。双荧光报告系统检测PDGFRβ启动子各缺失突变片段在2株细胞中的活性,筛选差异片段。生物信息学预测启动子区可能存在的转录因子。凝胶迁移实验研究转录因子在两株乳腺癌细胞中对PDGFRβ启动子的调节活性。结果:两株细胞中都有PDGFRβ的内源性表达,且在MDA-MB-231中表达较高。在2株细胞中找到了人PDGFRB 启动子的重要活性调节区,(+539bp,+1457bp)在2株细胞中均呈负调控,(+54bp,+539bp)在两株细胞中均呈正调控,(-983bp,+54bp)在MDA-MB-231中呈显著正调控,在MCF-7中没有活性。转录因子AP1的转录活性和与DNA的结合活性在MDA-MB-231中均高于MCF-7。结论:不同迁移表型的乳腺癌细胞中PDGFRβ存在不同的表达调控机制,PDGFRβ启动子活性片段(-983bp,+54bp)在两株细胞中存在显著活性差异。转录因子AP-1在两株细胞中有表达水平和结合活性差异。  相似文献   

3.
目的:探讨乳腺癌MDA-MB-231细胞中,Y性别决定区基因7(SOX7)基因启动子甲基化水平对细胞的体外迁移和侵袭的影响。方法:脂质体转染pcDNA3.0-DNA甲基转移酶3a(DNMT3a)质粒至MDA-MB-231细胞中,并于24h、48h及72h后,采用蛋白质免疫印迹实验(WB)检测细胞内DNMT3a蛋白表达水平;甲基化特异性定量PCR(Q-MSP)检测DNMT3a处理组、5-aza-C处理组及对照(Control)组MDA-MB-231细胞中的SOX7基因启动子DNA甲基化水平;实时荧光定量PCR(qRT-PCR)及WB实验检测各组MDA-MB-231细胞中的SOX7 m RNA和蛋白表达水平;细胞划痕实验及细胞侵袭实验检测各组MDA-MB-231细胞的迁移和侵袭能力。结果:pcDNA3.0-DNMT3a质粒转染MDA-MB-231细胞24h时,细胞内的DNMT3a蛋白表达水平最高。DNMT3a能够显著提高SOX7基因启动子DNA甲基化水平,而5-aza-C则抑制了SOX7基因启动子DNA甲基化水平(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞中,SOX7的m RNA及蛋白表达水平均明显下降,而5-aza-C处理组SOX7的m RNA及蛋白表达水平均明显增加(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞的迁移和侵袭能力均显著增强(P0.05),而5-aza-C处理组的MDA-MB-231细胞的迁移和侵袭能力变化不大(P0.05)。结论:在恶性肿瘤中,SOX7低表达表受其基因启动子高甲基化调节,且乳腺癌MDA-MB-231细胞中低表达的SOX7能够影响细胞的外迁移和侵袭能力。  相似文献   

4.
5.
获得人成纤维细胞生长因子受体2Ⅲc(FGFR2Ⅲc)及其S252W突变型重组腺病毒,感染乳腺癌细胞MDA-MB-231,为下一步研究FGFR2Ⅲc基因的功能和作用机制奠定基础。以本实验室保存的含FGFR2Ⅲc基因的质粒为模板,PCR扩增得到FGFR2Ⅲc基因,重叠延伸法PCR获得FGFR2ⅢcS252W突变型基因;分别将上述野生型和突变型基因克隆至腺病毒穿梭质粒pAdTrack-CMV上,得到重组穿梭质粒pAdTrack-FGFR2Ⅲc和pAdTrack-FGFR2ⅢcS252W,DNA测序证实。Pme I酶切后分别与腺病毒骨架质粒pAdEasy-1共转化BJ-5183感受态细菌同源重组,得到的重组表达质粒Ad-FGFR2Ⅲc和Ad-FGFR2ⅢcS252W Pac I酶切线性化后转染HEK293A细胞进行重组腺病毒的包装和扩增,通过GFP报告基因观察病毒表达情况。收集重组病毒颗粒并测定滴度,进一步感染乳腺癌细胞MDA-MB-231,RT-PCR和Western blotting方法检测目的基因的表达,3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)法和流式细胞术分析细胞增殖情况。结果表明,成功构建了人FGFR2Ⅲc及其S252W突变型基因的重组腺病毒表达载体,获得的重组腺病毒颗粒能高效感染MDA-MB-231细胞,并表达目的基因。MTT结果显示FGFR2Ⅲc和S252W均能抑制MDA-MB-231细胞增殖,S252W抑制效果更加明显。流式细胞术表明FGFR2Ⅲc和S252W均能使MDA-MB-231细胞周期停滞于G0/G1期,抑制细胞增殖。  相似文献   

6.
Breast cancer is a heterogeneous disease with distinct subtypes that have made targeted therapy of breast cancer challenging. Previous studies have demonstrated that an altered autophagy capacity can influence the development of breast cancer. However, the molecular differences in starvation-induced autophagic responses in MDA-MB-231 and MCF-7 cells have not been fully elucidated. In this study, we found that an increase of LC3B-II protein expression level and a decrease of the p62 protein expression level in both cells treated by Earle’s balanced salt solution. Meanwhile, we observed an increase of autophagosome using transmission electron microscopy and an enhancement in the green fluorescence intensity of LC3B protein by confocal microscopy. Furthermore, we detected the expression of 13 autophagy-related (ATG) genes and 11 autophagy signaling pathway-related genes using qPCR. Among 13 ATG genes, we found that 6 genes were up-regulated in treated MDA-MB-231 cells, while 4 genes were up-regulated and 1 gene was down-regulated in treated MCF-7 cells. In addition, among 11 autophagy signaling pathway-related genes, 7 genes were up-regulated in treated MDA-MB-231 cells, while 5 genes were up-regulated and 1 gene was down-regulated in treated MCF-7 cells. These findings suggest that the autophagic response to starvation was different in the two treated cell lines, which will contribute to further study on the molecular mechanism of starvation-induced autophagy and improve the targeted therapy of breast cancer.  相似文献   

7.
8.
9.
Erythropoietin receptors (EPORs) are present not only in erythrocyte precursors but also in non-hematopoietic cells including cancer cells. In this study, we determined the effect of fetal bovine serum (FBS) in culture medium on the EPOR expression and viability of the estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Using flow cytometry, we showed that the inclusion of 10% FBS in the medium increased the EPOR expressions and viabilities of MDA-MB-231 and MCF-7 cells. The MDA-MB-231 showed greater EPOR expression than MCF-7 cells, suggesting that the presence of ERs on cells is associated with poor expression of EPOR. Culture medium containing 10% FBS also caused increased number of breast cancer cells entering the synthesis phase of the cell cycle. The study also showed that rHuEPO treatment did not affect viability of breast cancer cells. In conclusion, it was shown that the inclusion of FBS in culture medium increased expression of EPOR in breast cancer cells and rHuEPO treatment had no effect on the proliferation of these cancer cells.  相似文献   

10.
目的利用抑制乳腺癌MDA-MB-231细胞中SK-1基因表达,结合依托泊苷对细胞增殖的影响,研究乳腺癌的治疗新方法。方法将依托泊苷分别处理野生型及SK-1敲除型MDA-MB-231细胞,^3H-TdR掺入法分析细胞增殖,Transwell法分析细胞迁移,Western印迹检测SK-1蛋白表达及细胞周期检验点相关信号因子的蛋白表达,RT-PCR检测细胞内SK-1的mRNA表达量。结果依托泊苷在较高剂量时,MDA-MB-231细胞存活率明显下降,但依托泊苷却呈浓度依赖性促进乳腺癌细胞SK-1 mRNA及蛋白水平表达,将SK-1敲除,细胞迁移率下降,而且可以增强G1期各抑癌基因的激活或高表达,使细胞周期阻滞。结论SK-1基因敲除有效增强肿瘤细胞对化疗药物的敏感性。  相似文献   

11.
12.
Using the technique of differential cDNA library screening, a cDNA clone was isolated from an estrogen receptor (ER)-positive breast carcinoma cell line (MCF7) cDNA library based upon the overexpression of this gene compared to an ER-negative cell line (MDA-MB-231). Sequence analysis of this clone determined that it shared significant homology to G-protein-coupled receptors. This receptor, GPCR-Br, was abundantly expressed in the ER-positive breast carcinoma cell lines MCF7, T-47D, and MDA-MB-361. Expression was absent or minimal in the ER-negative breast carcinoma cell lines BT-20, MDA-MB-231, and HBL-100. GPCR-Br was ubiquitously expressed in human tissues examined but was most abundant in placenta. GPCR-Br expression was examined in 11 primary breast carcinomas. GPCR-Br was detected in all 4 ER-positive tumors and only 1 of 7 ER-negative tumors. Based upon PCR analysis in hybrid cell lines, the gene for GPCR-Br (HGMW-approved symbol GPR30) was mapped to chromosome 7p22. The pattern of expression of GPCR-Br indicates that this receptor may be involved in physiologic responses specific to hormonally responsive tissues.  相似文献   

13.
目的:探讨微小RNA-221/222(miR-221/222)对乳腺癌MDA-MB-231/阿霉素(DOX)细胞DOX耐药性的影响。方法:采用脂质体法转染miR-221/222抑制物(miR-221/222 inhibitor)至MDA-MB-231/DOX细胞内(Inhibitor组),同时设立空白对照组和转染无关序列的阴性对照组,采用实时荧光定量PCR (qRT-PCR)检测MDA-MB-231细胞株及MDA-MB-231/DOX细胞株的miR-221/222表达水平及转染效率;CCK-8法检测转染48 h后MDA-MB-231/DOX细胞对DOX药物敏感性的变化;流式细胞术(FCM)检测转染MDA-MB-231/DOX细胞的细胞凋亡率;蛋白免疫印迹实验(WB)检测转染后MDA-MB-231/DOX细胞内促凋亡蛋白p53上调凋亡调控因子(PUMA),Bcl2蛋白修饰因子(BMF)以及细胞周期蛋白激酶抑制因子p27(p27Kip1)的表达情况。结果:MDA-MB-231/DOX细胞中的miR-221/222表达水平高于亲本MDA-MB-231细胞(P0.05);MDA-MB-231/DOX细胞转染miR-221/222 inhibitor 96 h后,miR-221/222的表达水平低于空白对照组和阴性对照组(P0.05);与空白对照组相比,MDA-MB-231/DOX细胞转染miR-221/222 inhibitor 48h后,DOX继续处理48 h后,细胞的凋亡率明显升高,且细胞内的促凋亡蛋白PUMA,BMF以及p27Kip1的表达均增加(P0.05);DOX对inhibitor组耐药细胞的半数抑制浓度(IC50)显著低于空白对照组细胞及阴性对照组(P0.05)。结论:miR-221/222能够增加MDA-MB-231/DOX细胞对DOX的耐药性,这可能与下调促凋亡蛋白的表达有关;降低miR-221/222水平可诱导MDA-MB-231/DOX凋亡,并且上调促凋亡蛋白的表达,从而部分逆转MDA-MB-231/DOX对DOX的耐药性。  相似文献   

14.
This study examined the effects of parathyroid hormone-related protein (PTHrP) derived from human MDA-MB-231 breast cancer cells on the tumor growth and osteoblast inhibition. Results revealed that knocking down PTHrP expression in the breast cancer cells strikingly inhibited the formation of subcutaneous tumors in nude mice. PTHrP knockdown dramatically decreased the levels of cyclins D1 and A1 proteins and arrested the cell cycle progression at the G1 stage. PTHrP knockdown led to the cleavage of Caspase 8 and induced apoptosis of the tumor cells. Interestingly, knocking down PTHrP increased the levels of Beclin1 and LC3-II and promoted the formation of autophagosomes. Knocking down PTHrP expression significantly reduced the abilities of the breast cancer cells to inhibit osteoblast differentiation and bone formation in vitro and in vivo. Finally, we found that PTHrP activated its own expression through an autocrine mechanism in MDA-MB-231 cells. Collectively, these studies suggest that targeting PTHrP expression in the tumor cells could be a potential therapeutic strategy for breast cancers, especially those with skeletal metastases.  相似文献   

15.
We previously reported stable transfection of estrogen receptor alpha (ERalpha) into the ER-negative MDA-MB-231 cells (S30) as a tool to examine the mechanism of action of estrogen and antiestrogens [J. Natl. Cancer Inst. 84 (1992) 580]. To examine the mechanism of ERbeta action directly, we have similarly created ERbeta stable transfectants in MDA-MB-231 cells. MDA-MB-231 cells were stably transfected with ERbeta cDNA and clones were screened by estrogen response element (ERE)-luciferase assay and ERbeta mRNA expression was quantified by real-time RT-PCR. Three stable MDA-MB-231/ERbeta clones were compared with S30 cells with respect to their growth properties, ability to activate ERE- and activating protein-1 (AP-1) luciferase reporter constructs, and the ability to activate the endogenous ER-regulated transforming growth factor alpha (TGFalpha) gene. ERbeta6 and ERbeta27 clones express 300-400-fold and the ERbeta41 clone express 1600-fold higher ERbeta mRNA levels compared with untransfected MDA-MB-231 cells. Unlike S30 cells, 17beta-estradiol (E2) does not inhibit ERbeta41 cell growth. ERE-luciferase activity is induced six-fold by E2 whereas neither 4-hydroxytamoxifen (4-OHT) nor ICI 182, 780 activated an AP-1-luciferase reporter. TGFalpha mRNA is induced in response to E2, but not in response to 4-OHT. MDA-MB-231/ERbeta clones exhibit distinct characteristics from S30 cells including growth properties and the ability to induce TGFalpha gene expression. Furthermore, ERbeta, at least in the context of the MDA-MB-231 cellular milieu, does not enhance AP-1 activity in the presence of antiestrogens. In summary, the availability of both ERalpha and ERbeta stable breast cancer cell lines now allows us to compare and contrast the long-term consequences of individual signal transduction pathways.  相似文献   

16.
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer.  相似文献   

17.
18.
Conjugated linoleic acid (CLA) is a collective term for a group of positional and geometric conjugated dienoic isomers of linoleic acid. CLA has been shown to have strong inhibitory effects on mammary carcinogenesis both in vitro and in vivo. In this study, we investigated the regulation of human stearoyl-CoA desaturase (SCD, EC 1.14.99.5) expression by CLA in human breast cancer cell lines, MDA-MB-231 and MCF-7. Treatment of the cells with the cis-9,trans-11 and trans-10,cis-12 CLA isomers (45 microM) did not repress SCD mRNA in both MDA-MB-231 and MCF-7 cells. However, the cis-9,trans-11 and trans-10,cis-12 CLA isomers significantly decreased SCD protein levels and SCD activity in MDA-MB-231 cells. In MCF-7 cells, both isomers did not affect protein levels, but they inhibited SCD activity. These results suggest that in MDA-MB-231 cells the cis-9,trans-11 and trans-10,cis-12 CLA isomers regulate human SCD by reducing SCD protein levels, while in MCF-7 cells both isomers have a direct inhibitory effect on SCD enzyme activity.  相似文献   

19.

Background

Metformin has been shown to have a strong anti-proliferative effect in many breast cancer cell lines, mainly due to the activation of the energy sensing kinase, AMP-activated protein kinase (AMPK). MDA-MB-231 cells are aggressive and invasive breast cancer cells that are known to be resistant to several anti-cancer agents as well as to the anti-proliferative effect of metformin. As metformin is a glucose lowering drug, we hypothesized that normoglycemia will sensitize MDA-MB-231 cells to the anti-proliferative effect of metformin.

Methods

MDA-MB-231 cells were treated with increasing metformin concentrations in hyperglycemic or normoglycemic conditions. The growth inhibitory effect of metformin was assessed by MTT assay. The expression of several proteins involved in cell proliferation was measured by Western blotting.

Results

In agreement with previous studies, treatment with metformin did not inhibit the growth of MDA-MB-231 cells cultured in hyperglycemic conditions. However, metformin significantly inhibited MDA-MB-231 growth when the cells were cultured in normoglycemic conditions. In addition, we show that metformin-treatment of MDA-MB-231 cells cultured in normoglycemic conditions and not in hyperglycemic conditions caused a striking activation of AMPK, and an AMPK-dependent inhibition of multiple molecular signaling pathways known to control protein synthesis and cell proliferation.

Conclusion

Our data show that normoglycemia sensitizes the triple negative MDA-MB-231 breast cancer cells to the anti-proliferative effect of metformin through an AMPK-dependent mechanism.

General significance

These findings suggest that tight normoglycemic control may enhance the anti-proliferative effect of metformin in diabetic cancer patients.  相似文献   

20.
BackgroundBreast cancer is a leading cause of death in women and with an increasing worldwide incidence. Doxorubicin, as a first-line anthracycline-based drug is conventional used on breast cancer clinical chemotherapy. However, the drug resistances limited the curative effect of the doxorubicin therapy in breast cancer patients, but the molecular mechanism determinants of breast cancer resistance to doxorubicin chemotherapy are not fully understood. In order to explore the association between metadherin (MTDH) and doxorubicin sensitivity, the differential expressions of MTDH in breast cancer cell lines and the sensitivity to doxorubicin of breast cancer cell lines were investigated.MethodsThe mRNA and protein expression of MTDH were determined by real-time PCR and Western blot in breast cancer cells such as MDA-MB-231, MCF-7, MDA-MB-435S, MCF-7/ADR cells. Once MTDH gene was knocked down by siRNA in MCF-7/ADR cells and overexpressed by MTDH plasmid transfection in MDA-MB-231 cells, the cell growth and therapeutic sensitivity of doxorubicin were evaluated using MTT and the Cell cycle assay and apoptosis rate was determined by flow cytometry.ResultsMCF-7/ADR cells revealed highly expressed MTDH and MDA-MB-231 cells had the lowest expression of MTDH. After MTDH gene was knocked down, the cell proliferation was inhibited, and the inhibitory rate of cell growth and apoptosis rate were enhanced, and the cell cycle arrest during the G0/G1 phase in the presence of doxorubicin treatment. On the other hand, the opposite results were observed in MDA-MB-231 cells with overexpressed MTDH gene.ConclusionMTDH gene plays a promoting role in the proliferation of breast cancer cells and its high expression may be associated with doxorubicin sensitivity of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号