首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ribosomal DNA (rDNA) repeats of the plant-parasitic nematode Meloidogyne arenaria are heterogeneous in size and appear to contain 5S rRNA gene sequences. Moreover, in a recA + bacterial host, plasmid clones of a 9 kb rDNA repeat show deletion events within a 2 kb intergenic spacer (IGS), between 28S and 5S DNA sequences. These deletions appear to result from a reduction in the number of tandem 129 by repeats in the IGS. The loss of such repeats might explain how rDNA length heterogeneity, observed in the Meloidogyne genome, could have arisen. Each 129 by repeat also contains three copies of an 8 by subrepeat, which has sequence similarity to an element found in the IGS repeats of some plant rDNAs.  相似文献   

2.
3.
Summary Size variations in the intergenic spacer of ribosomal DNA were detected between individual plants of openly pollinatedPhaseolus coccineus. Eleven days after sowing, two plant samples were examined: slowly developing plants with a length less than 40 cm; and fast developing plants with a length greater than 70 cm. The two samples were characterized by different plant weight and, at maturity, by highly distinctive seed yield. They also exhibited distinct patterns of protein expression as analyzed by 2-D electrophoresis. In particular a 38 kDa protein, related to malate dehydrogenase on the basis of its N-terminal sequence, was present at higher concentration and higher activity levels in fast developing plants. Intergenic spacer length variants were detected in both samples at approximately 180 bp intervals. More than one spacer length variant was present in each individual plant. At least 13 different intergenic spacer hybridization patterns were in fact detected: some patterns occurred equally in both slowly and fast developing samples while the majority of patterns was significantly different between the two samples.Abbreviations FDP fast developing plants - IGS intergenic spacer - MDH malate dehydrogenase - rDNA SLV spacer length variant of ribosomal DNA - SDP slowly developing plants  相似文献   

4.
Thirty-six clones were recovered fromCucurbita maxima genomic DNA which had been enriched for rDNA and cleaved at the unique repeat unitHind III site. Twenty-nine of these, which contain complete rDNA units, were compared to a standard whose intergenic spacer (IGS) nucleotide sequence has been determined. Twenty-one are identical in length and restriction site pattern. Eight which differ from the standard in length do so because of addition or deletion of varying numbers of IGS subrepetitive units of two different classes, with four of the length variants being different in both of these classes. Seven clones were isolated which contain incomplete repeat units, six of which are composites of rDNA and non-rDNA material. They have been cleaved at the unique rDNAHind III site at one end and at a non-rDNAHind III site at the other. We consider it most likely that these are derived from the termini of repeat unit tandem arrays, although other explanations are possible. Twelve individual plants of two different cultivars were examined for heterogeneity of IGS length distribution. They all appear to be identical in this regard.  相似文献   

5.
We cloned and sequenced the Vicia sativa 25S-18S rDNA intergenic spacer (IGS) and the satellite repeat S12, thought to be related to the spacer sequence. The spacer was shown to contain three types of subrepeats (A, B, and C) with monomers of 173 bp (A), 10 bp (B), and 66 bp (C), separated by unique or partially duplicated sequences. Two spacer variants were detected in V. sativa that differed in length (2990 and 3168 bp) owing to an extra copy of the subrepeat A. The A subrepeats were also shown to be highly homologous to the satellite repeat S12, which is located in large clusters on chromosomes 4, 5, and 6, and is not associated with the rDNA loci. Sequencing of additional S12 clones retrieved from a shotgun genomic library allowed definition of three subfamilies of this repeat based on minor differences in their nucleotide sequences. Two of these subfamilies could be discriminated from the rest of the S12 sequences as well as from the IGS A subrepeats using specific oligonucleotide primers that labeled only a subset of the S12 loci when used in the primed in situ DNA labeling (PRINS) reaction on mitotic chromosomes. These experiments showed that, in spite of the high overall similarity of the IGS A subrepeats and the S12 satellite repeats, there are S12 subfamilies that are divergent from the common consensus and are present at only some of the chromosomes containing the S12 loci. Thus, the subfamilies may have evolved at these loci following the spreading of the A subrepeats from the IGS to genomic regions outside the rDNA clusters.Electronic Supplementary Material Supplementary material is available in the online version of this article at Accession numbers: GenBank AY234364–AY234374. The monomer sequences and additional information about the family of IGS-like repeat S12 will also appear in the PlantSat database (Macas et al. 2002, ) under Accession name Vicia_sativa_IGS-like  相似文献   

6.
7.
Summary The nuclear rDNA units of species belonging to the genus Beta were characterized using heterologous probes of flax (entire unit and 25S) and sunflower (6.1-kb Eco fragment containing the 18S, the entire intergenic spacer (IGS) and a small piece of the 25S). The physical maps of one species from each section of the genus was constructed by localization of the EcoRI, BamHI, HindIII, KpnI and SacI restriction sites. For each species a single individual was used to obtain total DNA. The major unit length is 11 kb, but variant length units at 10.4, 10.7 and 11.3 kb were found as minor forms. However, some individuals carried the 10.4-kb or the 10.7-kb variant length unit as the major form. For the variant length units of one species the restriction sites were conserved, so that the variation in length occurred in the IGS. The EcoRI fragment corresponding to the intergenic spacer appeared to be the best indicator of variation. The variable sequence in the IGS sometimes generated new restriction sites for the Corollinae and mainly, did so, for the Vulgares relative to the Procumbentes. The variable sites were able, to differentiate the three sections and species within the sections. Corollinae species belong to two different groups according to the absence or the presence of the BamHI (B4) site. The Vulgares species contain several unit types. We proposed that all the unit types derived from a unique unit, V-11-2.3, by unequal crossing-overs or conversion. We also supposed a homogenization mechanism because we found individuals homogeneous for every unit type. Among the cultivated beets, all the root beets contain only one rDNA unit type, V-11-2.9. Thus, we supposed that the common unit type of cultivated beets either brings a physiological advantage or is strictly linked to a favorable allele. It is likely that the rDNA unit of B. maritima were eliminated from sugar beet by the breeding process since they were not recovered. Whatever the process, we deduced that all the cultivated forms of beets likely originated in a unique plant ascendant.A phylogenic tree of the genus is proposed, based on the nuclear rDNA maps, and subsequently discussed relative to the systematic tree and other molecular phylogenies.This work was supported by grant No. 9157A between INRA and the companies Deleplanque et Cie, SES France, Maribo France, Graines Franco Suédoises, KWS France and Van der Have France  相似文献   

8.
9.
The nuclear 18S, 5.8S and 25S rRNA genes exist as thousands of rDNA repeats in the Scots pine genome. The number and location of rDNA loci (nucleolus organizers, NORs) were studied by cytological methods, and a restriction map from the coding region of the Scots pine rDNA repeat was constructed using digoxigenin-labeled flax rDNA as a probe. Based on the maximum number of nucleoli and chromosomal secondary constrictions, Scots pine has at least eight NORs in its haploid genome. The size of the Scots pine rDNA repeat unit is approximately 27 kb, two- or threefold larger than the typical angiosperm rDNA unit, but similar in size to other characterized conifer rDNA repeats. The intergenic spacer region (IGS) of the rDNA repeat unit in Scots pine is longer than 20 kb, and the transcribed spacer regions surrounding the 5.8S gene (ITS1 and ITS2) span a region of 2.9 kb. Restriction analysis revealed that although the coding regions of rDNA repeats are homogeneous, heterogeneity exists in the intergenic spacer region between individuals, as well as among the rDNA repeats within individuals.  相似文献   

10.
11.
The patterns of the ribosomal DNA (rDNA) repeat units in seven Drosophila melanogaster inversional mutants have been studied. Among them, only the In(1)sc8 and its deletional derivative Df(1)mal12 female rDNAs exibited significant reduction in the size of nearly all units, compared to the wild-type females (Canton S, Oregon R). Further investigation shows that each kind of repeat (insertion-free, insertion-containing) in the Xsc8 rDNA array is highly enriched with short (reduced to 4 kilobases) intergenic spacers (IGSs). We revealed two main types of rearrangements. Only part of the 4 kb IGSs display variable length deletions (0.2–0.6 kb) at the 5′ ends, within the so-called ‘1900’ base pair (bp) region, recognizable by restriction endonuclease AluI. The presence of additional 100–150 bp DNA in the start portion of this region has also been demonstrated. In contrast, the 3′ end spacer regions, corresponding to the external transcribed spacer, do not show any changes in size. These data indicate how reductions of approximately 1.1 kb DNAs in sc8 IGSs, carrying both the rearranged and non-rearranged ‘1900’ sequences, are achieved: the fixed decrease of a number of 240 bp AluI subrepeats, clustered in the central IGS portion, also contribute. None of the other similar inversional mutants examined has so many IGS variants. Therefore, alterations in the Xsc8 rRNA gene cluster seem not to be dependent on its inversional status. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
13.
rDNA序列中的ITS作为DNA barcoding广泛应用于真菌的系统发育与物种辅助鉴定,IGS被认为可以用于种内水平不同菌株的鉴别。食用菌中还没有完整的rDNA序列的报道。本研究采用二代和三代测序技术分别对金针菇单核菌株“6-3”进行测序,用二代测序的数据对三代测序组装得到的基因组序列进行修正,得到一个在基因完整性、连续性和准确性均较好的基因组序列,对比Fibroporia vaillantii rDNA序列,获得金针菇完整的rDNA序列。金针菇rDNA序列结构分析表明,它有8个rDNA转录单元,长度均为5 903bp,有9个基因间隔区,其长度有较大差异,3 909-4 566bp。rDNA转录单元中,各元件的序列长度分别为:18S rDNA 1 796bp、ITS1 234bp、5.8S rDNA 173bp、ITS2 291bp、28S rDNA 3 410bp。基因间间隔区中,IGS1 1 351-1 399bp、5S rDNA 124bp、IGS2 2 435-3 092bp。金针菇的5S、5.8S、18S、28S rDNA序列准确性得到转录组数据的验证,也得到系统发育分析结果的支持。多序列比对发现,不同拷贝的基因间间隔区序列(IGS1和IGS2)存在丰富的多态性,多态性来源于SNP、InDel和TRS(串联重复序列),而TRS来源于重复单元的类型和数量。9个基因间间隔区之间,IGS1只有少量的SNP和InDel,IGS2不仅有SNP和InDel,还有TRS。本研究结果提示,在应用IGS进行种内水平不同菌株之间的鉴别时,需要选取不同拷贝之间的保守IGS序列。  相似文献   

14.
Entamoeba dispar andEntamoeba histolytica are now recognized as two distinct species-the former being nonpathogenic to humans. We had earlier studied the organization of ribosomal RNA genes inE. histolytica. Here we report the analysis of ribosomal RNA genes inE. dispar. The rRNA genes ofE. dispar, like their counterpart inE. histolytica are located on a circular rDNA molecule. From restriction map analysis, the size ofE. dispar rDNA circle was estimated to be 24·4 kb. The size was also confirmed by linearizing the circle withBsaHI, and by limited DNAseI digestion. The restriction map of theE. dispar rDNA circle showed close similarity to EhR1, the rDNA circle ofE. histolytica strain HM-1:IMSS which has two rDNA units per circle. The various families of short tandem repeats found in the upstream and downstream intergenic spacers (IGS) of EhR1 were also present inE. dispar. Partial sequencing of the cloned fragments ofE. dispar rDNA and comparison with EhR1 revealed only 2·6% to 3·8% sequence divergence in the IGS. The region Tr and the adjoiningPvuI repeats in the IGS of EhR1, which are missing in thoseE. histolytica strains that have one rDNA unit per circle, were present in theE. dispar rDNA circle. Such close similarity in the overall organization and sequence of the IGS of rDNAs of two different species is uncommon. In fact the spacer sequences were only slightly more divergent than the 18S rRNA gene sequence which differs by 1·6% in the two species. The most divergent sequence betweenE. histolytica andE. dispar was the internal transcribed spacer, ITS2. Therefore, it was concluded that probes derived from the ITS1 and ITS 2 sequences would be more reliable and reproducible than probes from the IGS regions used earlier for identifying these species.  相似文献   

15.
The ribosomal DNA repeat units of two closely related species of the genus Fraxinus, F. excelsior and F. oxyphylla, were characterized. The physical maps were constructed from DNA digested with BamHI, EcoRI, EcoRV and SacI, and hybridized with three heterologous probes. The presence or the absence of an EcoRV restriction site in the 18s RNA gene characterizes two ribosomal DNA unit types found in both species and which coexist in all individuals. A third unit type appeared unique to all individuals of F. oxyphylla. It carries an EcoRI site in the intergenic spacer. Each type of unit displayed length variations. The rDNA unit length of F. excelsior and F. oxyphylla was determined with EcoRV restriction. It varied between 11kb and 14.5kb in F. excelsior and between 11.8kb to 13.8kb in F. oxyphylla. Using SacI restriction, at least ten spacer length variants were observed in F. excelsior, for which a detailed analysis was conducted. Each individual carries 2–4 length variants which vary by a 0.3-kb step multiple. This length variation was assigned to the intergenic spacer. By using the entire rDNA unit of flax as probe in combination with EcoRI restriction, each species can be unambiguously discriminated. The species-specific banding pattern was used to compare trees from a zone of sympatry between the two species. In some cases, a conflicting classification was obtained from morphological analysis and the use of the species-specific rDNA polymorphism. Implications for the genetic management of both species are discussed.  相似文献   

16.
Two length variants of 5S rDNA repeated units were detected in the genome of East European butterfly Melitaea trivia. Both repeat variants contain the 5S rRNA coding region of the same length of 120 bp, but possess the intergenic spacer region (IGS) of different size, 78 and 125 bp, respectively. The level of sequence similarity between the two 5S rDNA variants amounts to 43.9-45.5% in the IGS, whereas the coding region appears to be more conservative. In the IGS, microsatellite sequence motives were found; amplification of these motives could be involved in the evolution of the 5S rDNA.  相似文献   

17.
Polymerase chain reaction (PCR)-amplified, sequenced, and digitally typed intergenic spacers (IGSs) of the ribosomal (r)DNA in D. melanogaster reveal unexpected features of the mechanisms of turnover involved with the concerted evolution of the gene family. Characterization of the structure of three isolated IGS length variants reveals breakage hot spots within the 330-base-pair (bp) subrepeat array found in the spacers. Internal mapping of variant repeats within the 240-bp subrepeat array using a novel digital DNA typing procedure (minisatellite variant repeat [MVR]-PCR) shows an unexpected pattern of clustering of variant repeats. Each 240-bp subrepeat array consists of essentially two halves with the repeats in each half identified by specific mutations. This bipartite structure, observed in a cloned IGS unit, in the majority of genomic DNA of laboratory and wild flies and in PCR-amplified products, has been widely homogenized yet is not predicted by a model of unequal crossing over with randomly placed recombination breakpoints. Furthermore, wild populations contain large numbers of length variants in contrast to uniformly shared length variants in laboratory stocks. High numbers of length variants coupled to the observation of a homogenized bipartite structure of the 240-bp subrepeat array suggest that the unit of turnover and homogenization is smaller than the IGS and might involve gene conversion. The use of PCR for the structural analysis of members of the rDNA gene family coupled to digital DNA typing provides powerful new inroads into the mechanisms of DNA turnover affecting the course of molecular evolution in this family. Correspondence to: G. A. Dover  相似文献   

18.
Nucleotide sequences of the rDNA intergenic spacer (IGS) region in Pythium ultimum were determined in 16 clones obtained from three isolates differing in production of sexual organs. Several sequences with different lengths were detected in each isolate, showing heterogeneity in the IGS region. In addition, several tandem repeat regions were detected in all the clones. The sequences, length, and number of each copy largely varied among repeat regions. Length heterogeneity arose from the complex combination of the number of copy within the repeat regions. Furthermore, the nucleotide sequence of each copy and the number of repetition varied not only between isolates but also between clones from an isolate. Based on the sequence similarity and the number of copies in repeat regions, specific patterns different between homothallic P. ultimum and the Pythium group HS (hyphal swellings) were recognized in a few regions. These results suggest that these two groups have slight genetic differences in the IGS region, although the differences in most of the repeat regions were not enough to identify each group.  相似文献   

19.
Summary The nuclear 18 S, 5.8 S and 25 S ribosomal RNA genes (rDNA) of Cucumis sativus (cucumber) occur in at least four different repeat types of 10.2, 10.5, 11.5, and 12.5 kb in length. The intergenic spacer of these repeats has been cloned and characterized with respect to sequence organization. The spacer structure is very unusual compared to those of other eukaryotes. Duplicated regions of 197 bp and 311 bp containing part of the 3 end of the 25 S rRNA coding region and approximately 470 bp of 25 S rRNA flanking sequences occur in the intergenic spacer. The data from sequence analysis suggest that these duplications originate from recombination events in which DNA sequences of the original rDNA spacer were paired with sequences of the 25 S rRNA coding region. The duplicated 3ends of the 25 S rRNA are separated from each other mostly by a tandemly repeated 30 bp element showing a high GC-content of 87.5%. In addition, another tandemly repeated sequence of 90 bp was found downstream of the 3flanking sequences of the 25 S rRNA coding region. These results suggest that rRNA coding sequences can be involved in the generation of rDNA spacer sequences by unequal crossing over.  相似文献   

20.
DNA restriction endonuclease fragment analysis was used to obtain new information on the genomic organization of ribosomal DNA (rDNA) of Brassica and allied genera. The total genomic DNA of 95 accessions of 52 species representing 16 genera was restricted with six enzymes, and the restriction fragments were probed with three ribosomal clones (pTA71, Ver 18‐6, and Ver 6‐5). Eleven repeat unit length classes were recognized. The repeat unit size classes of 8.9 kb and 9.5 kb were observed most commonly, being represented in 17 and 14 species, respectively. The restriction enzyme SacI produced three to six (generally three) bands with detectable hybridization to the probe pTA71. This probe–enzyme combination indicated a remarkable uniformity amongst Brassica and allied genera in the coding region of repeat units. By contrast, an extensive size variation in the restriction fragments could be localized in the intergenic spacer (IGS) region. Eleven IGS‐containing length variants were detected. Complex hybridization patterns, resulting from extensive repeat unit heterogeneity and taxon‐specific methylation of one or more cleavage sites, were obtained with the EcoRI + pTA71 combination. The relative homologies between the coding regions were evident from the presence of 1.5 kb in all the taxa, and 0.4‐, 1.3‐, and 1.7‐kb fragments in 33, 27, and 24 species, respectively. The SacI + pTA71 and EcoRI + pTA71 combinations were generally able to distinguish taxa both within and between genera. Three restriction endonuclease digests probed with three ribosomal clones yielded essentially identical fragmentation patterns across all the accessions within the cultivated species Brassica campestris, B. oleracea, and B. juncea. In B. napus, three and seven accessions exhibited restriction profiles similar to one and both diploid progenitor species, respectively. Overall, rDNA repeat unit length polymorphism showed good correlation with the cytodeme‐based classification of Brassica and allied genera. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 545–557.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号