首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
Anaerobic digestion (AD) is widely used in treating the sewage sludge, as it can reduce the amount of sludge, eliminate pathogens and produce biofuel. To enhance the operational performance and stability of anaerobic bioreactors, operational and conventional chemical data from full-scale sludge anaerobic digesters were collected over a 2-year period and summarized, and the microbial community diversity of the sludge sample was investigated at various stages of the AD process. For the purpose of distinguishing between the functional and community diversity of the microbes, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) software was used to impute the prevalence of 16S rDNA marker gene sequences in the difference in various sludge samples. Meanwhile, a taxa analysis was also carried out to investigate the different sludge samples. The microbial community diversity analysis of one AD sludge sample showed that the most dominant bacterial genera were Saccharicrinis, Syntrophus, Anaerotruncus and Thermanaerothrix. Among archaea, acetoclastic Methanosaeta represented 56.0 %, and hydrogenotrophic Methanospirillum, Methanoculleus, Methanothermus and Methanolinea accounted for 41.3 % of all methanogens. The taxa, genetic and functional prediction analyses of the feedstock and AD sludge samples suggested great community diversity differences between them. The taxa of bacteria in two AD sludge samples were considerably different, but the abundances of the functional KEGG pathways took on similar levels. The numbers of identified pathogens were significantly lower in the digested sludge than in the feedstock, but the PICRUSt results showed the difference in “human diseases” abundances in the level-1 pathway between the two sludge samples was small.  相似文献   

2.
3.
The effect of altitude and season on abundance and diversity of the culturable heterotrophic bacterial and yeast community was examined at four forest sites in the Italian Alps along an altitude gradient (545–2000 m). Independently of altitude, bacteria isolated at 0 °C (psychrophiles) were less numerous than those recovered at 20 °C. In autumn, psychrophilic bacterial population increased with altitude. The 1194 bacterial strains were primarily affiliated with the classes Alpha-, Beta-, Gammaproteobacteria, Spingobacteriia and Flavobacteriia. Fifty-seven of 112 operational taxonomic units represented potential novel species. Strains isolated at 20 °C had a higher diversity and showed similarities in taxa composition and abundance, regardless of altitude or season, while strains isolated at 0 °C showed differences in community composition at lower and higher altitudes. In contrast to bacteria, yeast diversity was season-dependent: site- and altitude-specific effects on yeast diversity were only detected in spring. Isolation temperature affected the relative proportions of yeast genera. Isolations recovered 719 strains, belonging to the classes Dothideomycetes, Saccharomycetes, Tremellomycetes and Mycrobotryomycetes. The presence of few dominant bacterial OTUs and yeast species indicated a resilient microbial population that is not affected by season or altitude. Soil nutrient contents influenced significantly abundance and diversity of culturable bacteria, but not of culturable yeasts.  相似文献   

4.
To determine what capabilities wood-eating and detritivorous catfishes have for the digestion of refractory polysaccharides with the aid of an endosymbiotic microbial community, the pH, redox potentials, concentrations of short-chain fatty acids (SCFAs), and the activity levels of 14 digestive enzymes were measured along the gastrointestinal (GI) tracts of three wood-eating taxa (Panaque cf. nigrolineatus “Marañon”, Panaque nocturnus, and Hypostomus pyrineusi) and one detritivorous species (Pterygoplichthys disjunctivus) from the family Loricariidae. Negative redox potentials (?600 mV) were observed in the intestinal fluids of the fish, suggesting that fermentative digestion was possible. However, SCFA concentrations were low (<3 mM in any intestinal region), indicating that little GI fermentation occurs in the fishes’ GI tracts. Cellulase and xylanase activities were low (<0.03 U g?1), and generally decreased distally in the intestine, whereas amylolytic and laminarinase activities were five and two orders of magnitude greater, respectively, than cellulase and xylanase activities, suggesting that the fish more readily digest soluble polysaccharides. Furthermore, the Michaelis–Menten constants (K m) of the fishes’ β-glucosidase and N-acetyl-β-d-glucosaminidase enzymes were significantly lower than the K m values of microbial enzymes ingested with their food, further suggesting that the fish efficiently digest soluble components of their detrital diet rather than refractory polysaccharides. Coupled with rapid gut transit and poor cellulose digestibility, the wood-eating catfishes appear to be detritivores reliant on endogenous digestive mechanisms, as are other loricariid catfishes. This stands in contrast to truly “xylivorous” taxa (e.g., beavers, termites), which are reliant on an endosymbiotic community of microorganisms to digest refractory polysaccharides.  相似文献   

5.
The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.  相似文献   

6.
Dissolved organic nitrogen (DON) is recognised as an important N source for phytoplankton. However, its relative importance for phytoplankton nutrition and community composition has not been studied comprehensively. This study, conducted in a typical Scottish fjord, representative of near-pristine coastal environments, evaluates the utilisation of DON and dissolved inorganic nitrogen (DIN) by different microbial size fractions and the relationship of phytoplankton community composition with DON and other parameters. The study demonstrated that DON was important in supporting phytoplankton throughout the yearly production cycle. The higher-than-expected urea uptake rates and large fraction of the spring bloom production supported by DON suggested that organic N not only contributes to regenerated production and to the nutrition of the small phytoplankton fraction, but can also contribute substantially to new production of the larger phytoplankton in coastal waters. Multivariate statistical techniques revealed two phytoplankton assemblages with peaks in abundance at different times of the year: a spring group dominated by Skeletonema spp., Thalassiosira spp., and Pseudo-nitzschia spp. group delicatissima; and a summer/autumn group dominated by Chaetoceros spp., Scrippsiella spp., and Pseudo-nitzschia spp. group seriata. The multivariate pattern in community composition and abundance of these taxa was significantly correlated with the multivariate pattern of DON, urea, dissolved free amino acids, DIN, temperature, salinity, and daylength, with daylength and urea being particularly important, suggesting both physical and chemical controls on community composition.  相似文献   

7.
The goal of this study was to evaluate the microbial communities in the gut and feces from female finishing Landrace pigs with high and low feed conversion ratio (FCR) by 16S rRNA gene amplicon sequencing. Many potential biomarkers can distinguish between high and low FCR groups in the duodenum, ileum, cecum, colon, and rectum, according to linear discriminant analysis effect sizes. The relative abundance of microbes were tested by Mann–Whitney test between the high and low FCR groups in different organs: Campylobacter, Prevotella and Sphaerochaeta were different in the duodenum (P < 0.05); Sanguibacter, Kingella and Anaeroplasma in jejunum; Anaeroplasma, Arthrobacter, Kingella, Megasphaera and SMB53 in the ileum; Butyricicoccus, Campylobacter, Mitsuokella, and Coprobacillus in the cecum; Lactococcus and Peptococcus in the colon; Staphylococcus in the rectum; and Rothia in feces. The prevalence of microbial genera in certain locations could potentially be used as biomarkers to distinguish between high and low FCR. Functional prediction clustering analysis suggested that bacteria in the hindgut mainly participated in carbohydrate metabolism and amino acid metabolism, and different in the relative abundance of metabolic pathways, as predicted from the microbial taxa present, were identified by comparing the high and low groups of each location. The results may provide insights for the alteration of the intestinal microbial communities to improve the growth rate of pigs.  相似文献   

8.
Pentachlorophenol (PCP) has been widely used as a pesticide in paddy fields and has imposed negative ecological effect on agricultural soil systems, which are in typically anaerobic conditions. In this study, we investigated the effect of repeated additions of PCP to paddy soil on the microbial communities under anoxic conditions. Acetate was added as the carbon source to induce and accelerate cycles of the PCP degradation. A maximum degradation rate occurred at the 11th cycle, which completely transformed 32.3 μM (8.6 mg L?1) PCP in 5 days. Illumina high throughput sequencing of 16S rRNA gene was used to profile the diversity and abundance of microbial communities at each interval and the results showed that the phyla of Bacteroidates, Firmicutes, Proteobacteria, and Euryarchaeota had a dominant presence in the PCP-dechlorinating cultures. Methanosarcina, Syntrophobotulus, Anaeromusa, Zoogloea, Treponema, W22 (family of Cloacamonaceae), and unclassified Cloacamonales were found to be the dominant genera during PCP dechlorination with acetate. The microbial community structure became relatively stable as cycles increased. Treponema, W22, and unclassified Cloacamonales were firstly observed to be associated with PCP dechlorination in the present study. Methanosarcina that have been isolated or identified in PCP dechlorination cultures previously was apparently enriched in the PCP dechlorination cultures. Additionally, the iron-cycling bacteria Syntrophobotulus, Anaeromusa, and Zoogloea were enriched in the PCP dechlorination cultures indicated they were likely to play an important role in PCP dechlorination. These findings increase our understanding for the microbial and geochemical interactions inherent in the transformation of organic contaminants from iron rich soil, and further extend our knowledge of the PCP-transforming microbial communities in anaerobic soil conditions.  相似文献   

9.
Rabbit neutrophils peptide-1 (NP-1) is a type of defensin that possesses a broad spectrum of antimicrobial activity. Chlorella ellipsoidea is a new eukaryotic expression system for exogenously producing NP-1. The NP-1 transgenic C. ellipsoidea can be directly added into feed as antimicrobial agent without any purification procedure for the NP-1 peptide. However, the effects of C. ellipsoidea and NP-1 on the host gut microbiota should be explored before application. In this study, diets containing different concentrations (1.25, 2.5, and 5 %) of C. ellipsoidea and NP-1 transgenic C. ellipsoidea were administered to male Sprague–Dawley rats. Compared with the chow diet control group, none of the experimental groups showed any significant differences in their growth indices, and no histopathological damage was observed. The phylotypes of gut microbiota in the control group, the 5 % C. ellipsoidea diet group and the 5 % NP-1 transgenic C. ellipsoidea diet group were determined by 16S rRNA sequencing. The results showed that both 5 % experimental groups had shifted community memberships of gut microbiota. In particular, the 5 % NP-1 transgenic C. ellipsoidea diet exhibited an increased abundance of most Gram-positive bacterial taxa and a reduced abundance of most Gram-negative bacterial taxa, and it promoted the growth of some lactic acid bacterial genera. Lactic acid bacteria, especially the Bifidobacterium and Lactobacillus, have been widely reported to be benefic effects on the host. Thus NP-1 transgenic C. ellipsoidea is promising feed additive and gut regulator, as it have the potential to increase the abundance of Bifidobacterium and Lactobacillus in gut microbiota of animal.  相似文献   

10.
Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities.  相似文献   

11.
We aimed to evaluate the capability of bio-organic fertilizer suppressing watermelon Fusarium wilt disease, compare the variations of the rhizosphere bacterial and fungal community compositions after treatment with different fertilizers, and explore mechanisms causing disease suppression in rhizosphere microbial community. A rhizobacterium (Bacillus amyloliquefaciens JDF35) was identified to control watermelon Fusarium wilt disease. Bio-organic fertilizer JDF35 (BOF) was generated by inoculating JDF35 into the organic fertilizer (OF) composed of cow and chicken manure compost (1:50 v/w). A three successive growing season pot experiment was designed to evaluate the effects of BOF compared with OF and chemical fertilizer (CF). Next-generation sequencing using the Illumina MiSeq platform was used to investigate the variations in rhizosphere microbial community composition. The growth of the watermelon plants, soil pH, and available N, P and K concentrations were the highest in the BOF treatment. The Fusarium wilt incidence in the BOF treatment was lower than that in the CF and OF treatment, and the differences for disease incidence were significant (P < 0.001). The diversity of the rhizosphere bacterial community was higher, and that of the fungal was lower in the BOF treatment. Most importantly, the BOF treatment had lowest abundances of Fusarium. The application of the BOF altered the composition of rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant growth.  相似文献   

12.
In methane-rich environments, methane-oxidizing bacteria usually occur predominantly among consortia including other types of microorganisms. In this study, artificial coal bed gas and methane gas were used to enrich mixed methanotrophic cultures from the soil of a coal mine in China, respectively. The changes in microbial community structure and function during the enrichment were examined. The microbial diversity was reduced as the enrichment proceeded, while the capacity for methane oxidation was significantly enhanced by the increased abundance of methanotrophs. The proportion of type II methanotrophs increased greatly from 7.84 % in the sampled soil to about 50 % in the enrichment cultures, due to the increase of methane concentration. After the microbial community of the cultures got stable, Methylomonas and Methylocystis became the dominant type I and type II methanotrophs, while Methylophilus was the prevailing methylotroph. The sequences affiliated with pigment-producing strains, Methylomonas rubra, Hydrogenophaga sp. AH-24, and Flavobacterium cucumis, could explain the orange appearance of the cultures. Comparing the two cultures, the multi-carbon sources in the artificial coal bed gas caused more variety of non-methanotrophic bacteria, but did not help to maintain the diversity or to increase the quantity and activity of methanotrophs. The results could help to understand the succession and interaction of microbial community in a methane-driven ecosystem.  相似文献   

13.

Background and aims

Invasive plants have been associated with alterations to soil properties, functions, and organisms, with the potential to impact ecosystem processes. An observational study was conducted to determine how the invasive plant Frangula alnus affects soil microbial communities and biogeochemical processes in Wisconsin forests.

Methods

Paired invaded/non-invaded sites (n = 10), including high (n = 5) and low (n = 5) density invasions, were sampled in spring, summer, and fall. Soil was analyzed for extractable and total nitrogen (N), N mineralization rate, total carbon, microbial biomass carbon and N, and microbial community structure using terminal restriction fragment length polymorphisms.

Results

Linear regression analysis with robust variance estimation revealed higher N mineralization rates in invaded sites than non-invaded sites in summer, and in high density invaded sites than non-invaded sites overall (p < 0.05). There was not a corresponding increase in extractable N. No differences between invaded and non-invaded sites were observed for other variables.

Conclusions

Nitrogen-rich F. alnus leaf litter (3.2 % of dry mass) may contribute to elevated N mineralization at these sites, though pre-existing conditions may be responsible. Results suggest that F. alnus alters N cycling but has little impact on soil carbon pools and microbial communities.
  相似文献   

14.
The lung in cystic fibrosis (CF) is home to numerous pathogens that shorten the lives of patients. The aim of the present study was to assess changes in the lung bacteriome following antibiotic therapy targeting Pseudomonas aeruginosa in children with CF. The study included nine children (9–18 years) with CF who were treated for their chronic or intermittent positivity for Pseudomonas aeruginosa. The bacteriomes were determined in 16 pairs of sputa collected at the beginning and at the end of a course of intravenous antibiotic therapy via deep sequencing of the variable region 4 of the 16S rRNA gene, and the total bacterial load and selected specific pathogens were assessed using quantitative real-time PCR. The effect of antipseudomonal antibiotics was observable as a profound decrease in the total 16S rDNA load (p = 0.001) as well as in a broad range of individual taxa including Staphylococcus aureus (p = 0.03) and several members of the Streptococcus mitis group (S. oralis, S. mitis, and S. infantis) (p = 0.003). Improvements in forced expiratory volume (FEV1) were associated with an increase in Granulicatella sp. (p = 0.004), whereas a negative association was noted between the total bacterial load and white blood cell count (p = 0.007). In conclusion, the data show how microbial communities differ in reaction to antipseudomonal treatment, suggesting that certain rare species may be associated with clinical parameters. Our work also demonstrates the utility of absolute quantification of bacterial load in addition to the 16S rDNA profiling.  相似文献   

15.
16.
Semi-sessile Mytilus mussels are used as indicators of climate changes, but their geographic distribution is not sufficiently known in the Arctic. The aim of this study was to investigate the taxonomic status and genetic differentiation of Mytilus populations in a Northwest Greenlandic fjord at Maarmorilik, impacted by contaminations from a former mine. In this study, mussels were collected at three sites differing in exposure to environmental factors. A total of 54 polymorphic SNPs found in the Mytilus EST and DNA sequences analyzed were successfully applied to 256 individuals. The results provided the first evidence for the existence of M. trossulus in Greenland. The mussel from M. trossulus and M. edulis taxa are shown to coexist and hybridize in the fjord. The three studied sites were found to differ significantly in the distribution of taxa with a higher prevalence of M. trossulus in the inner fjord. The identified M. edulis × M. trossulus hybrids mostly had a hybrid index score of about 0.5, indicating a similar number of alleles characteristic for M. trossulus and M. edulis. There was a low number of backcrosses between ‘pure’ taxa and hybrids. This newly discovered hybrid zone between the two taxa is unique in comparison with the Canadian populations. As Mytilus mussels in Greenland hitherto have been regarded as the one taxon M. edulis, the results have importance for biogeography and future monitoring and environmental studies.  相似文献   

17.
Bilayer films prepared by the lamination of fish gelatin film (GF) and its corresponding emulsified film (EF) with different thickness ratios (7:3, 5:5 and 3:7) were characterized. Bilayer films had the similar tensile strength (TS) to EF (p > 0.05) but showed lower elongation at break (EAB) (p < 0.05). All bilayer films showed the lower water vapor permeability (WVP) but higher oxygen permeability (OP) than GF. Bilayer films had varying ΔE* (total color different), where the highest value was observed in that laminated with higher thickness ratio of EF (p < 0.05). Lower light transmission and higher transparency value were obtained for bilayer films, compared to GF (p < 0.05). Based on scanning electron microscopic (SEM) cross-section micrographs, all bilayer films consisted of two layers. Differential scanning calorimetric (DSC) analysis revealed that the bilayer films had the higher glass transition temperature (T g) than GF but lower than EF. All bilayer films were heat sealable, however their seal strength and seal efficiency were lower than those of GF (p < 0.05). Therefore, the thickness ratios of GF and EF had a marked effect on the mechanical and barrier properties as well as heat sealing ability of resulting bilayer films.  相似文献   

18.
This study addresses the biodiversity profile of bacterial community in the intestinal lumen and mucosa of snow trout fish by applying 16S rRNA gene 454-pyrosequencing. A total of 209,106 sequences with average length 689 (±53) were filtered, denoised, trimmed, and then sorted into OTUs based on 97 % sequence similarity using the USEARCH software pipeline. Bacteria representing 10 phyla were found in the samples investigated. Fimicutes ribotypes were present in intestinal-mucosa and lumen in all fish and often dominated the libraries (average 43 and 38 %, respectively). Proteobacteria were also prevalent, but at a lower relative abundance, at 22 and 29 % in mucosa and lumen, respectively. The autochthonous microbiota was dominated by sequences belonging to the Bacilli (mean sequence abundance 24 %), in particular the Lactobacillaceae, with Lactobacillus and Pediococcous being the most abundant genera. Fewer Bacilli (mean sequence abundance 22 %) and Actinobacteria (2 %) were present in the lumen, and allochthonous communities consisted of a more even split among the bacterial classes, with increases in sequences assigned to members of the γ-Proteobacteria (16 %) and Fusobacteriia (8 %). The principal bacterial genera recorded in the lumen belonged to the lactic acid bacteria group, Cetobacterium, Clostridium and Synechococcus. Results obtained suggest that the lumen and mucosal layer of the snow trout intestine may host different microbial communities. Moreover, both regions harbour a diverse microbiome with a greater microbial diversity in the intestinal mucus compared with the luminal communities of the fish. Many of these microbes might be of high physiological relevance for the fish and may play key roles in the functioning of its gut.  相似文献   

19.
Metamifop is universally used in agriculture as a post-emergence aryloxyphenoxy propionate herbicide (AOPP), however its microbial degradation mechanism remains unclear. Consortium ME-1 isolated from AOPP-contaminated soil can degrade metamifop completely after 6 days and utilize it as the carbon source for bacterial growth. Meanwhile, consortium ME-1 possessed the ability to degrade metamifop stably under a wide range of pH (6.0–10.0) or temperature (20–42 °C). HPLC–MS analysis shows that N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methyl propionamide, 2-(4-hydroxyphenoxy)-propionic acid, 6-chloro-2-benzoxazolinone and N-methyl-2-fluoroaniline, were detected and identified as four intermediate metabolites. Based on the metabolites identified, a putative metabolic pathway of metamifop was proposed for the first time. In addition, the consortium ME-1 was also able to transform or degrade other AOPP such as fenoxaprop-p-ethyl, clodinafop-propargyl, quizalofop-p-ethyl and cyhalofop-butyl. Moreover, the community structure of ME-1 with lower microbial diversity compared with the initial soil sample was investigated by high throughput sequencing. β-Proteobacteria and Sphingobacteria were the largest class with sequence percentages of 46.6% and 27.55% at the class level. In addition, 50 genera were classified in consortium ME-1, of which Methylobacillus, Sphingobacterium, Bordetella and Flavobacterium were the dominant genera with sequence percentages of 25.79, 25.61, 14.68 and 9.55%, respectively.  相似文献   

20.
Bacteria play crucial roles in the combined system of substrate addition and C/N control, which has been demonstrated to improve aquaculture production. However, the complexity of surface-attached bacteria on substrates and suspended bacteria in the water column hamper further application of this system. This study firstly applied this combined system into the culture of grass carp, and then explored the relationship between microbial complexes from surface-attached and suspended bacteria in this system and the production of grass carp. In addition, this study investigated bacterial community structures as affected by four C/N ratios using Illumina sequencing technology. The results demonstrated that the weight gain rate and specific growth rate of grass carp in the CN20 group (C/N ratio 20:1) were the highest (P < 0.05), and dietary supplementation of the microbial complex had positive effects on the growth of grass carp (P < 0.05). Sequencing data revealed that, (1) the proportions of Verrucomicrobiae and Rhodobacter (surface-attached), sediminibacterium (suspended), and emticicia (surface-attached and suspended) were much higher in the CN20 group compared with those in the other groups (P < 0.05); (2) Rhodobacter, Flavobacterium, Acinetobacter, Pseudomonas, Planctomyces, and Cloacibacterium might be important for the microbial colonization on substrates; (3) as the C/N ratio increased, proportions of Hydrogenophaga (surface-attached and suspended), Zoogloea, and Flectobacillus (suspended) increased, but proportions of Bacillus, Clavibacter, and Cellvibro (surface-attached and suspended) decreased. In summary, a combined system of substrate addition and C/N control increased the production of grass carp, and Verrucomicrobiae and Rhodobacter in the surface-attached bacterial community were potential probiotic bacteria that contributed to the enhanced growth of grass carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号