首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Gynogenetically produced XX and YY Nile tilapia (Oreochromis niloticus) and diploid control groups were screened for amplified fragment length polymorphisms (AFLPs) to search for sex-linked or sex-specific markers. Family-level bulked segregant analysis (XX and YY gynogenetic family pools) and individual screening (XX and YY gynogenetics and XX and XY control individuals) identified 3 Y-linked (OniY425, OniY382, OniY227) and one X-linked (OniX420) AFLP markers. OniX420 and OniY425 were shown to be allelic. Single locus polymerase chain reaction assays were developed for these markers. Tight linkage was demonstrated between the AFLP markers and the sex locus within the source families. However, these markers failed to consistently identify sex in unrelated individuals, indicating recombination between the markers and the sex-determining loci. O. niloticus bacterial artificial chromosome clones, containing the AFLP markers, hybridized to the long arm of chromosome 1. This confirmed previous evidence, based on meiotic chromosome pairing and fluorescence in situ hybridization probes obtained through chromosome microdissection, that chromosome pair 1 is the sex chromosomes.  相似文献   

2.
Sex in Oreochromis niloticus (Nile tilapia) is principally determined by an XX/XY locus but other genetic and environmental factors also influence sex ratio. Restriction Associated DNA (RAD) sequencing was used in two families derived from crossing XY males with females from an isogenic clonal line, in order to identify Single Nucleotide Polymorphisms (SNPs) and map the sex-determining region(s). We constructed a linkage map with 3,802 SNPs, which corresponded to 3,280 informative markers, and identified a major sex-determining region on linkage group 1, explaining nearly 96% of the phenotypic variance. This sex-determining region was mapped in a 2 cM interval, corresponding to approximately 1.2 Mb in the O. niloticus draft genome. In order to validate this, a diverse family (4 families; 96 individuals in total) and population (40 broodstock individuals) test panel were genotyped for five of the SNPs showing the highest association with phenotypic sex. From the expanded data set, SNPs Oni23063 and Oni28137 showed the highest association, which persisted both in the case of family and population data. Across the entire dataset all females were found to be homozygous for these two SNPs. Males were heterozygous, with the exception of five individuals in the population and two in the family dataset. These fish possessed the homozygous genotype expected of females. Progeny sex ratios (over 95% females) from two of the males with the “female” genotype indicated that they were neomales (XX males). Sex reversal induced by elevated temperature during sexual differentiation also resulted in phenotypic males with the “female” genotype. This study narrows down the region containing the main sex-determining locus, and provides genetic markers tightly linked to this locus, with an association that persisted across the population. These markers will be of use in refining the production of genetically male O. niloticus for aquaculture.  相似文献   

3.

Background

Fish species often exhibit significant sexual dimorphism for commercially important traits. Accordingly, the control of phenotypic sex, and in particular the production of monosex cultures, is of particular interest to the aquaculture industry. Sex determination in the widely farmed Nile tilapia (Oreochromis niloticus) is complex, involving genomic regions on at least three chromosomes (chromosomes 1, 3 and 23) and interacting in certain cases with elevated early rearing temperature as well. Thus, sex ratios may vary substantially from 50%.

Results

This study focused on mapping sex-determining quantitative trait loci (QTL) in families with skewed sex ratios. These included four families that showed an excess of males (male ratio varied between 64% and 93%) when reared at standard temperature (28°C) and a fifth family in which an excess of males (96%) was observed when fry were reared at 36°C for ten days from first feeding. All the samples used in the current study were genotyped for two single-nucleotide polymorphisms (rs397507167 and rs397507165) located in the expected major sex-determining region in linkage group 1 (LG 1). The only misassigned individuals were phenotypic males with the expected female genotype, suggesting that those offspring had undergone sex-reversal with respect to the major sex-determining locus. We mapped SNPs identified from double digest Restriction-site Associated DNA (ddRAD) sequencing in these five families. Three genetic maps were constructed consisting of 641, 175 and 1,155 SNPs from the three largest families. QTL analyses provided evidence for a novel genome-wide significant QTL in LG 20. Evidence was also found for another sex-determining QTL in the fifth family, in the proximal region of LG 1.

Conclusions

Overall, the results from this study suggest that these previously undetected QTLs are involved in sex determination in the Nile tilapia, causing sex reversal (masculinisation) with respect to the XX genotype at the major sex-determining locus in LG 1.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1383-x) contains supplementary material, which is available to authorized users.  相似文献   

4.
Aflp markers tightly linked to the sex locus in Asparagus officinalis L.   总被引:8,自引:0,他引:8  
Nine AFLP markers linked to the sex locus in Asparagus officinalis L. have been identified by non-radioactive AFLP technique and bulked segregant analysis. A composite map of one F2 and two F1 populations identified three very tightly linked markers. These markers did not give recombinants in the three different populations and mapped 0.5, 0.7 and 1 cM to the sex locus. Codominant scoring of the markers in the F2 population from a selfed andromonoecious plant could distinguish the XX, XY and YY asparagus plants. The AFLP markers were isolated from the gel and cloned into plasmid vectors. The marker E41M50, which is a low-copy sequence and did not give any recombinants in the screened populations, detected polymorphism between female and male plants when used as RFLP probe. The AFLP markers we obtained are important to plant breeding, particularly in the development of sex specific PCR primers that could be used in the screening of different asparagus plants at the seedling stage. They are likewise important in the elucidation of the mechanisms underlying sex determination and differentiation in this species.  相似文献   

5.
 First results from two strategies aimed at elucidating the genetics of sex in the dioecious genus Actinidia Lindl. (Actinidiaceae) support the hypothesis that sex-determining genes are localized in a pair of chromosomes which, although cytologically indistinguishable, function like an XX/XY system with male heterogamety. A. chinensis Planch., a close relative of the kiwifruit [A. deliciosa (A. Chev.) CF Liang et AR Ferguson], has diploid and tetraploid races. Bulk segregant analysis to find sex-linked markers revealed two markers whose inheritance patterns in three diploid families showed X and Y linkage and indicated that the male is the heterogametic sex. Some recombination between the markers and the sex-determining loci was also demonstrated. Sex ratios in 12 progenies from controlled crosses varied around 1:1, as expected for an XX/XY system. Received: 20 December 1995 / Revision accepted: 24 April 1997  相似文献   

6.
Asparagus officinalis L. is a dioecious plant. A region called the M-locus located on a pair of homomorphic sex chromosomes controls the sexual dimorphism in asparagus. The aim of this work was to clone the region determining sex in asparagus from its position in the genome. The structure of the region encompassing M should be investigated and compared to the sex-determining regions in other dioecious model species. To establish an improved basis for physical mapping, a high-resolution genetic map was enriched with AFLP markers closely linked to the target locus by carrying out a bulked segregant analysis. By screening a BAC library with AFLP- and STS-markers followed by chromosome walking, a physical map with eight contigs could be established. However, the gaps between the contigs could not be closed due to a plethora of repetitive elements. Surprisingly, two of the contigs on one side of the M-locus did not overlap although they have been established with two markers, which mapped in a distance as low as 0.25 cM flanking the sex locus. Thus, the clustering of the markers indicates a reduced recombination frequency within the M-region. On the opposite side of the M-locus, a contig was mapped in a distance of 0.38 cM. Four closely linked BAC clones were partially sequenced and 64 putative ORFs were identified. Interestingly, only 25% of the ORFs showed sequence similarity to known proteins and ESTs. In addition, an accumulation of repetitive sequences and a low gene density was revealed in the sex-determining region of asparagus. Molecular cytogenetic and sequence analysis of BACs flanking the M-locus indicate that the BACs contain highly repetitive sequences that localize to centromeric and pericentromeric locations on all asparagus chromosomes, which hindered the localization of the M-locus to the single pair of sex chromosomes. We speculate that dioecious Silene, papaya and Asparagus species may represent three stages in the evolution of XX, XY sex determination systems. Given that asparagus still rarely produces hermaphroditic flowers and has homomorphic sex chromosomes, this species may be an ideal system to further investigates early sex chromosome evolution and the origins of dioecy.  相似文献   

7.
 The Arabidopsis tornado1 (trn1) mutation causes severe dwarfism combined with twisted growth of all organs. We present a chromosome landing strategy, using amplified restriction fragment length polymorphism (AFLP) marker technology, for the isolation of the TRN1 gene. The recessive trn1 mutation was identified in a C24 transgenic line and is located 5 cM from a T-DNA insertion. We mapped the TRN1 locus to the bottom half of chromosome 5 relative to visible and restriction fragment length polymorphism (RFLP) markers. Recombinant classes within a 3-cM region around TRN1 were used to build a high-resolution map in this region, using the AFLP technique. Approximately 300 primer combinations have been used to test about 26 000 fragments for polymorphisms. Seventeen of these AFLP markers were identified in the 3-cM region around TRN1. These markers were mapped within this region using individual recombinants. Four of these AFLP markers co-segregate with TRN1 whereas one maps at one recombinant below TRN1. We isolated and cloned three of these AFLP markers. These markers identified two yeast artificial chromosome (YAC) clones, containing the RFLP marker above and the AFLP marker below TRN1, demonstrating that these YACs span the TRN1 locus and that chromosome landing has been achieved, using an AFLP-based strategy. Received: 25 April 1996 / Accepted: 26 June 1996  相似文献   

8.
Z. Yang  F. Xu  Z. Zhang  J. Li  Y. Jia  H. Li  X. Liu 《Animal genetics》2019,50(6):733-739
Integrated linkage maps for each sex have been constructed for the Pacific abalone Haliotis discus hannai using three F1 mapping families based on co‐dominant markers. A total of 273 markers were placed on the female map, spanning 927.3 cM with an average interval of 3.64 cM, whereas 277 markers were mapped on the male map, covering 727.0 cM with an average spacing of 2.80 cM. Both female and male maps consisted of 18 linkage groups, corresponding well with the number of chromosomes. Furthermore, the sex‐determining locus and the green/orange shell color controlling locus were mapped to the linkage group 3 (LG3) and LG9 respectively. A marker completely linked to phenotypic sex was identified, and the sex determination system was further concluded as paternal heterogametic (males XY and females XX). Based on the segregation ratio of the shell color in the progeny, a simple recessive model of epistasis was proposed to explain the distribution of different color morphs (green, orange and blue): the recessive allele determining orange type masks the effect of the locus controlling green and blue types, whereas the dominant allele at the green/orange locus permits the expression of green and blue types controlled by another locus. The current consensus map provides a useful framework for genetic studies in the Pacific abalone. Mapping of the sex‐determining locus and the shell color‐controlling locus leads to further understanding of the mechanisms underlying these important traits.  相似文献   

9.
The Pacific white shrimp Litopenaeus vannamei is a predominant aquaculture shrimp species in the world. Like other animals, the L. vannamei exhibited sexual dimorphism in growth trait. Mapping of the sex-determining locus will be very helpful to clarify the sex determination system and further benefit the shrimp aquaculture industry towards the production of mono-sex stocks. Based on the data used for high-density linkage map construction, linkage-mapping analysis was conducted. The sex determination region was mapped in linkage group (LG) 18. A large region from 0 to 21.205 cM in LG18 showed significant association with sex. However, none of the markers in this region showed complete association with sex in the other populations. So an association analysis was designed using the female parent, pool of female progenies, male parent, and pool of male progenies. Markers were de novo developed and those showing significant differences between female and male pools were identified. Among them, three sex-associated markers including one fully associated marker were identified. Integration of linkage and association analysis showed that the sex determination region was fine-mapped in a small region along LG18. The identified sex-associated marker can be used for the sex detection of this species at genetic level. The fine-mapped sex-determining region will contribute to the mapping of sex-determining gene and help to clarify sex determination system for L. vannamei.  相似文献   

10.
A DM-domain gene on the Y chromosome was identified as the sex-determining gene in the medaka, Oryzias latipes, and named DMY (also known as dmrt1bY). However, this gene is absent in most Oryzias fishes, suggesting that closely related species have another sex-determining gene. In fact, it has been demonstrated that the Y chromosome in O. dancena is not homologous to that in O. latipes, whereas both species have an XX/XY sex-determination system. Through a progeny test of sex-reversed fish and a linkage analysis of isolated sex-linked DNA markers, we show that O. hubbsi, which is one of the most closely related species to O. dancena, has a ZZ/ZW system. In addition, genetic and fluorescence in situ hybridization mapping of the sex-linked markers revealed that sex chromosomes in O. hubbsi and O. dancena are not homologous, indicating different origins of these ZW and XY sex chromosomes. Furthermore, we found that O. hubbsi has morphologically heteromorphic sex chromosomes, in which the W chromosome has 4,6-diamidino-2-phenylindole (DAPI)-positive heterochromatin blocks and is larger than the Z chromosome, although such differentiated sex chromosomes have not been observed in other Oryzias species. These findings suggest that a variety of sex-determining mechanisms and sex chromosomes have evolved in Oryzias.  相似文献   

11.
We report here the molecular mapping of a fertility restorer gene (named Rf1) for Owen cytoplasmic male sterility in sugar beet. Eight AFLP and two RAPD markers, tightly linked to the Rf1 locus, were identified using bulked segregant analysis. Three AFLP markers, mAFEM972, mAFEM976 and mAFEM985, were found to co-segregate with the Rf1 allele in our mapping populations. With the help of RFLP markers, previously mapped on the sugar beet genome, we showed that Rf1 is positioned in the terminal region of linkage group Kiel III/Koeln IV. This map location agrees well with that found for the restorer gene X, which suggests that the Rf1 locus corresponds to the X locus. The availability of the molecular markers will facilitate the selection of maintainer–pollinator lines in breeding program and provide the foundation for map-based cloning of the Rf1 gene.  相似文献   

12.
The Arabidopsis tornado1 (trn1) mutation causes severe dwarfism combined with twisted growth of all organs. We present a chromosome landing strategy, using amplified restriction fragment length polymorphism (AFLP) marker technology, for the isolation of the TRN1 gene. The recessive trn1 mutation was identified in a C24 transgenic line and is located 5?cM from a T-DNA insertion. We mapped the TRN1 locus to the bottom half of chromosome 5 relative to visible and restriction fragment length polymorphism (RFLP) markers. Recombinant classes within a 3-cM region around TRN1 were used to build a high-resolution map in this region, using the AFLP technique. Approximately 300 primer combinations have been used to test about 26?000 fragments for polymorphisms. Seventeen of these AFLP markers were identified in the 3-cM region around TRN1. These markers were mapped within this region using individual recombinants. Four of these AFLP markers co-segregate with TRN1 whereas one maps at one recombinant below TRN1. We isolated and cloned three of these AFLP markers. These markers identified two yeast artificial chromosome (YAC) clones, containing the RFLP marker above and the AFLP marker below TRN1, demonstrating that these YACs span the TRN1 locus and that chromosome landing has been achieved, using an AFLP-based strategy.  相似文献   

13.
Genetic markers in tilapia species associated with loci affecting sex determination (SD), sex‐specific mortality or both were mapped to linkage groups (LG) 1, 2, 3, 6 and 23. The objective of this study was to use these markers to fine‐map the locus with the greatest effect on SD in Oreochromis niloticus. Our parental stock, full‐sibs of Nile tilapia (Swansea origin), were divided into three groups: (i) untreated, (ii) feminized by diethylstilbestrol and (iii) masculinized by 17α‐methyltestosterone. We analysed the first group for association of microsatellite markers representing these five LGs. The strongest association with gender was found on LG23 for marker UNH8982; P = 8.6 × 10?5). Allele 276 was found almost exclusively in males, and we hypothesized that this allele is a male‐associated allele (MAA). Sex‐reversed individuals were used for mating experiments with and without the segregating MAA. Mating of individuals lacking the MAA resulted in all‐female progeny. Mating of two heterozygotes for MAA gave rise to 81 males and 30 females. Analysis of association between gender and genotypes identified the MAA in 98.6% of males as opposed to 8.0% of females (χ2; P = 2.5 × 10?18). Eight markers that flank UNH898 were genotyped to map the locus on LG23 within a confidence interval of 16–21 cM. Mating of homozygous individuals for MAA is underway for production of all‐male populations.  相似文献   

14.
Among different teleost fish species, diverse sex-determining mechanisms exist, including environmental and genetic sex determination, yet chromosomal sex determination with male heterogamety (XY) prevails. Different pairs of autosomes have evolved as sex chromosomes among species in the same genus without evidence for a master sex-determining locus being identical. Models for evolution of Y chromosomes predict that male-advantageous genes become linked to a sex-determining locus and suppressed recombination ensures their co-inheritance. In the guppy, Poecilia reticulata, a set of genes responsible for adult male ornaments are linked to the sex-determining locus on the incipient Y chromosome. We have identified >60 sex-linked molecular markers to generate a detailed map for the sex linkage group of the guppy and compared it with the syntenic autosome 12 of medaka. We mapped the sex-determining locus to the distal end of the sex chromosome. We report a sex-biased distribution of recombination events in female and male meiosis on sex chromosomes. In one mapping cross, we observed sex ratio and male phenotype deviations and propose an atypical mode of genetic sex inheritance as its basis.  相似文献   

15.
The Bs2 resistance gene of pepper confers resistance against the bacterial pathogen Xanthomonas campestris pv. vesicatoria. As a first step toward isolation of the Bs2 gene, molecular markers tightly linked to the gene were identified by randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analysis of near-isogenic lines. Markers flanking the locus were identified and a high-resolution linkage map of the region was developed. One AFLP marker, A2, was found to cosegregate with the locus, while two others, F1 and B3, flank the locus and are within 0.6 cM. Physical mapping of the A2 and F1 markers indicates that these markers may be within 150 kb of each other. Together, these results indicate that the Bs2 region may be cloned either by chromosome walker or landing. The linked markers were also used to characterize gamma-irradiation-induced mutants at the Bs2 locus. Received: 15 January 1999 / Accepted: 11 May 1999  相似文献   

16.
For a simple, rapid and PCR-based screening of sex in the cultivated asparagus (Asparagus officinalis L.), we developed five STS markers from previously mapped, low-copy, sex-linked AFLP markers. A male/female PCR assay was feasible with these STS markers either by direct amplification or by digestion with restriction enzymes. Similar to the AFLP markers from which they were derived, STS4150.1, STS4150.2, STS4150.3 and STS3156 did not give recombinants in five different populations. STS3660 could be scored codominantly, enabling the differentiation of XY from YY males in the screened F2 mapping population. The use of the sex-linked STS markers should allow early identification of sex, thus accelerating the breeding process for new asparagus varieties. Further, 10 additional AFLP markers obtained with PstI/MseI primer combinations have been mapped on the L5 chromosome, bringing the total number of known AFLP and STS markers flanking the sex locus to 24. These markers can be utilized for fine mapping of the sex gene in asparagus, which will pave the way for a map-based cloning approach. Received: 31 May 1999 / Accepted: 22 June 1999  相似文献   

17.
Resistance based on slow-rusting genes has proven to be a useful strategy to develop wheat cultivars with durable resistance to rust diseases in wheat. However this type of resistance is often difficult to incorporate into a single genetic background due to the polygenic and additive nature of the genes involved. Therefore, markers, both molecular and phenotypic, are useful tools to facilitate the use of this type of resistance in wheat breeding programs. We have used field assays to score for both leaf and yellow rust in an Avocet-YrA × Attila population that segregates for several slow-rusting leaf and yellow rust resistance genes. This population was analyzed with the AFLP technique and the slow-rusting resistance locus Lr46/Yr29 was identified. A common set of AFLP and SSR markers linked to the Lr46/Yr29 locus was identified and validated in other recombinant inbred families developed from single chromosome recombinant populations that segregated for Lr46. These populations segregated for leaf tip necrosis (LTN) in the field, a trait that had previously been associated with Lr34/Yr18. We show that LTN is also pleiotropic or closely linked to the Lr46/Yr29 locus and suggest that a new Ltn gene designation should be given to this locus, in addition to the one that already exists for Lr34/Yr18. Coincidentally, members of a small gene family encoding β-1 proteasome subunits located on group 1L and 7S chromosomes implicated in plant defense were linked to the Lr34/Yr18 and Lr46/Yr29 loci.  相似文献   

18.
We have identified AFLP markers tightly linked to the locus conferring resistance to the leaf rust Melampsora larici-populina in Populus. The study was carried out using a hybrid progeny derived from an inter-specific, controlled cross between a resistant Populus deltoides female and a susceptible P. nigra male. The segregation ratio of resistant to susceptible plants suggested that a single, dominant locus defined this resistance. This locus, which we have designated Melampsora resistance (Mer), confers resistance against E1, E2, and E3, three different races of Melampsora larici-populina. In order to identify molecular markers linked to the Mer locus we decided to combine two different techniques: (1) the high-density marker technology, AFLP, which allows the analysis of thousands of markers in a relatively short time, and (2) the Bulked Segregant Analysis (BSA), a method which facilitates the identification of markers that are tightly linked to the locus of interest. We analyzed approximately 11,500 selectively amplified DNA fragments using 144 primer combinations and identified three markers tightly linked to the Mer locus. The markers can be useful in current breeding programs and are the basis for future cloning of the resistance gene.  相似文献   

19.
Elucidation of the sex‐determination mechanism in flathead grey mullet (Mugil cephalus) is required to exploit its economic potential by production of genetically determined monosex populations and application of hormonal treatment to parents rather than to the marketed progeny. Our objective was to construct a first‐generation linkage map of the M. cephalus in order to identify the sex‐determining region and sex‐determination system. Deep‐sequencing data of a single male was assembled and aligned to the genome of Nile tilapia (Oreochromis niloticus). A total 245 M. cephalus microsatellite markers were designed, spanning the syntenic tilapia genome assembly at intervals of 10 Mb. In the mapping family of full‐sib progeny, 156 segregating markers were used to construct a first‐generation linkage map of 24 linkage groups (LGs), corresponding to the number of chromosomes. The linkage map spanned approximately 1200 cM with an average inter‐marker distance of 10.6 cM. Markers segregating on LG9 in two independent mapping families showed nearly complete concordance with gender (R2 = 0.95). The sex determining locus was fine mapped within an interval of 8.6 cM on LG9. The sex of offspring was determined only by the alleles transmitted from the father, thus indicating an XY sex‐determination system.  相似文献   

20.
Here, we analyze the evolutionary dynamics of a satellite-DNA family in an attempt to understand the effect of factors such as location, organization, and repeat-copy number in the molecular drive process leading to the concerted-evolution pattern found in this type of repetitive sequences. The presence of RAE180 satellite-DNA in the dioecious species of the plant genus Rumex is a noteworthy feature at this respect, as RAE180 satellite repeats have accumulated differentially, showing a distinct distribution pattern in different species. The evolution of dioecious Rumex gave rise to two phylogenetic clades: one clade composed of species with an ancestral XX/XY sex chromosome system and a second, derived clade of species with a multiple sex–chromosome system XX/XY1Y2. While in the XX/XY dioecious species, the RAE180 satellite-DNA is located only in a small autosomal locus, the RAE180 repeats are present also in a small autosomal locus and additionally have been massively amplified in the Y chromosomes of XX/XY1Y2 species. Here, we have found that the RAE180 repeats of the autosomal locus of XX/XY species are characterized by intra-specific sequence homogeneity and inter-specific divergence and that the comparison of individual nucleotide positions between related species shows a general pattern of concerted evolution. On the contrary, both in the autosomal and the Y-linked loci of XX/XY1Y2 species, ancestral variability has remained with reduced rates of sequence homogenization and of evolution. Thus, this study demonstrates that molecular mechanisms of non-reciprocal exchange are key factors in the molecular drive process; the satellite DNAs in the non-recombining Y chromosomes show low rates of concerted evolution and intra-specific variability increase with no inter-specific divergence. By contrast, freely recombining loci undergo concerted evolution with genetic differentiation between species as occurred in the autosomal locus of XX/XY species. However, evolutionary periods of rapid sequence change might alternate with evolutionary periods of stasis with variability remaining by the reduced action of molecular mechanisms of non-reciprocal exchange as occurred in XX/XY1Y2 species, which could depend on repeat-copy number and the processes involved in their amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号