首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the specificity of Bacillus thuringiensis var. kurstaki strain HD1 insecticidal crystal proteins (ICP), we used membrane preparations obtained from the midgut of Heliothis virescens larvae to perform separate ligand-blot experiments with the three activated CryIA toxins. The CryIA(a) and the CryIA(b) toxins bind the same 170-kDa protein, but most likely at two different binding sites. The CryIA(c) toxin binds two proteins of molecular masses 140 kDa and 120 kDa. We also demonstrate that the binding proteins for each of the B. thuringiensis toxins are not part of a covalent complex. Although the 170-kDa protein is a glycoprotein, endoglycosidase treatment does not prevent the binding of the CryIA(a) or CryIA(b) toxin. This indicates that the sugars are not important for the binding of these toxins. A model for a protein complex binding the B. thuringiensis HD1 ICPs is presented. Our results support the idea that binding proteins on membranes of the gut epithelial cells of H. virescens larvea are important for the specificity of the bacterial toxins.  相似文献   

2.
The binding proteins, or receptors, for insecticidal Bacillus thuringiensis subsp. kurstaki delta-endotoxins are located in the brush border membranes of susceptible insect midguts. The interaction of one of these toxins, CryIA(c), with proteins isolated from Heliothis virescens larval midguts was investigated. To facilitate the identification of solubilized putative toxin-binding proteins, a solid-phase binding assay was developed and compared with toxin overlay assays. The overlay assays demonstrated that a number of proteins of 170, 140, 120, 90, 75, 60, and 50 kDa bound the radiolabeled CryIA(c) toxin. Anion-exchange fractionation allowed the separation of these proteins into three toxin binding fractions, or pools. Toxin overlay assays demonstrated that although the three pools had distinct protein profiles, similar-size proteins could be detected in these three pools. However, determination of toxin affinity by using the solid-phase binding assay showed that only one of the three pools contained high-affinity binding proteins. The Kd obtained, 0.65 nM, is similar to that of the unsolubilized brush border membrane vesicles. Thus, the solid-phase binding assay in combination with the toxin overlay assay facilitates the identification and purification of high-affinity B. thuringiensis toxin-binding proteins from the insect midgut.  相似文献   

3.
Binding of three Bacillus thuringiensis insecticidal crystal proteins (ICPs) to the midgut epithelium of Ostrinia nubilalis larvae was characterized by performing binding experiments with both isolated brush border membrane vesicles and gut tissue sections. Our results demonstrate that two independent ICP receptors are present in the brush border of O. nubilalis gut epithelium. From competition binding experiments performed with I-labeled and native ICPs it was concluded that CryIA(b) and CryIA(c) are recognized by the same receptor. An 11-fold-higher binding affinity of CryIA(b) for this receptor correlated with a 10-fold-higher toxicity of this ICP compared with CryIA(c). The CryIB toxin did not compete for the binding site of CryIA(b) and CryIA(c). Immunological detection of ingested B. thuringiensis ICPs on gut sections of O. nubilalis larvae revealed binding only along the epithelial brush border membrane. CryID and CryIE, two ICPs that are not toxic to O. nubilalis, were not bound to the apical microvilli of gut epithelial cells. In vitro binding experiments performed with native and biotinylated ICPs on tissue sections confirmed the correlation between ICP binding and toxicity. Moreover, by performing heterologous competition experiments with biotinylated and native ICPs, it was confirmed that the CryIB receptor is different from the receptor for CryIA(b) and CryIA(c). Retention of activated crystal proteins by the peritrophic membrane was not correlated with toxicity. Furthermore, it was demonstrated that CryIA(b), CryIA(c), and CryIB toxins interact in vitro with the epithelial microvilli of Malpighian tubules. In addition, CryIA(c) toxin also adheres to the basement membrane of the midgut epithelium.  相似文献   

4.
Aminopeptidase-N (AP-N) was purified from gypsy moth (Lymantria dispar, L.) brush border membrane vesicles (BBMV) proteins by mono-Q chromatography and Superdex-75 gel filtration in the presence of the zwitterionic detergent, CHAPS, using FPLC. The purified AP-N, identified by its enzymatic activity, had an apparent size of 100 kDa, and was identified as the unique Bacillus thuringiensis insecticidal toxin, CryIA(c), binding protein. AP-N clearly displayed strong binding to CryIA(c), exhibiting little or no binding to CryIA(a) or CryIA(b), and showing no binding for the coleopteran-specific toxin, CryIIIA. Protein blots of the BBMV proteins probed with biotin-labeled and 125I-labeled insecticidal proteins revealed that CryIAc binds only to 120 kDa protein which is a slightly larger size in comparison to purified AP-N. Antibodies raised against the gypsy moth AP-N demonstrated that the purified AP-N and the 120 kDa CryIA(c) binding protein of total BBMV proteins are antigenically identical.  相似文献   

5.
Binding of three Bacillus thuringiensis insecticidal crystal proteins (ICPs) to the midgut epithelium of Ostrinia nubilalis larvae was characterized by performing binding experiments with both isolated brush border membrane vesicles and gut tissue sections. Our results demonstrate that two independent ICP receptors are present in the brush border of O. nubilalis gut epithelium. From competition binding experiments performed with 125I-labeled and native ICPs it was concluded that CryIA(b) and CryIA(c) are recognized by the same receptor. An 11-fold-higher binding affinity of CryIA(b) for this receptor correlated with a 10-fold-higher toxicity of this ICP compared with CryIA(c). The CryIB toxin did not compete for the binding site of CryIA(b) and CryIA(c). Immunological detection of ingested B. thuringiensis ICPs on gut sections of O. nubilalis larvae revealed binding only along the epithelial brush border membrane. CryID and CryIE, two ICPs that are not toxic to O. nubilalis, were not bound to the apical microvilli of gut epithelial cells. In vitro binding experiments performed with native and biotinylated ICPs on tissue sections confirmed the correlation between ICP binding and toxicity. Moreover, by performing heterologous competition experiments with biotinylated and native ICPs, it was confirmed that the CryIB receptor is different from the receptor for CryIA(b) and CryIA(c). Retention of activated crystal proteins by the peritrophic membrane was not correlated with toxicity. Furthermore, it was demonstrated that CryIA(b), CryIA(c), and CryIB toxins interact in vitro with the epithelial microvilli of Malpighian tubules. In addition, CryIA(c) toxin also adheres to the basement membrane of the midgut epithelium.  相似文献   

6.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

7.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

8.
CryIIA is an effective insecticidal delta-endotoxin produced by several strains of Bacillus thuringiensis. Unlike CryI and CryIIIA-toxins that demonstrate some degree of saturable binding on the brush border of susceptible insects, neither saturable binding nor a saturable binding component was found for CryIIA on the midgut brush border of Helicoverpa zea. CryIIA did not dilute and block CryIA(c) binding, however, CryIA(c) effectively diluted CryIIA and stopped the initial binding of CryIIA to the brush border. These observations suggest that CryIIA and CryIA(c) toxins share a common component for binding on the midgut brush border. CryIIA formed voltage-dependent and not highly cation-selective channels in planar lipid bilayers unlike CryIA(c) and CryIIIA. Both CryIA(c) and CryIIA were stable in the digestive fluids of H. zea, but CryIIA was significantly less soluble than CryIA(c). Despite this difference in solubility, CryIIA arrested the feeding of third instar H. zea as rapidly as did CryIA(c), however, the onset of acute morbidity was delayed for CryIIA. Differences in solubility, binding, and ion channels formed by CryIIA toxin, resulted in reduced bioactivity against H. zea when compared with CryIA(c) but represent a unique mode of action among the delta endotoxins.  相似文献   

9.
To test whether the ability of Bacillus thuringiensis toxins to form pores in the midgut epithelial cell membrane of susceptible insects correlates with their in vivo toxicity, we measured the effects of different toxins on the electrical potential of the apical membrane of freshly isolated midguts from gypsy moth (Lymantria dispar) and silkworm (Bombyx mori) larvae. In the absence of toxin, the membrane potential, measured with a conventional glass microelectrode, was stable for up to 30 min. It was sensitive to the K+ concentration and the oxygenation of the external medium. Addition of toxins to which L. dispar is highly [CryIA(a) and CryIA(b)] or only slightly [CryIA(c) and CryIC] sensitive caused a rapid, irreversible, and dose-dependent depolarization of the membrane. CryIF, whose toxicity towards L. dispar is unknown, and CryIE, which is at best poorly active in vivo, were also active in vitro. In contrast, CryIB and CryIIIA, a coleopteran-specific toxin, had no significant effect. The basolateral-membrane potential was unaffected by CryIA(a) or CryIC when the toxin was applied to the basal side of the epithelium. In B. mori midguts, the apical-membrane potential was abolished by CryIA(a), to which silkworm larvae are susceptible, but CryIA(b) and CryIA(c); to which they are resistant, had no detectable effect. Although the technique discriminated between active and inactive toxins, the concentration required to produce a given effect varied much less extensively than the sensitivity of gypsy moth larvae, suggesting that additional factors influence the toxins' level of toxicity in vivo.  相似文献   

10.
The susceptibility of Trichoplusia ni larvae to several Bacillus thuringiensis insecticidal crystal proteins (ICPs) was tested. Neonatal larvae proved to be susceptible to solubilized trypsin-treated CryIA(a), CryIA(b), and CryIA(c) (50% lethal concentrations [LC(50)s], 570, 480, and 320 ng/cm, respectively) but showed little susceptibility to CryIB and CryID (LC(50)s, 5,640 and 2,530 ng/cm, respectively). The toxicity of ICPs was correlated to binding to the epithelial brush border of the midgut, as revealed by immunocytochemical staining with monoclonal antibodies. In vitro binding experiments with iodinated ICPs and brush border membrane vesicles indicated that CryIA(b) and CryIA(c) share the same high-affinity binding site, whereas CryIA(a) binds to a different one. The affinities of CryIA(b) and CryIA(c) for the binding site were similar (K(d) = 3.6 and 4.7 nM, respectively), and the mean binding-site concentration was 0.71 pmol/mg of vesicle protein. Selection of a population with increasing concentrations of CryIA(b) produced 31-fold resistance in seven generations. The realized heritability (h) was 0.19. The increase of homozygosity (for resistance factors) as selection proceeded was reflected in the increase in the slopes of the dose-mortality curves. Resistance was specific for CryIA(b) and did not extend to CryIA(a) or even to CryIA(c). This result was not predicted by the binding-site model, in which CryIA(b) and CryIA(c) bind to the same high-affinity binding site. This result may suggest a more complicated relationship between in vitro binding of ICPs to specific sites in the epithelial membrane of the midgut and the in vivo toxic effect.  相似文献   

11.
Proteins synthesized by the bacterium Bacillus thuringiensis are potent insecticides. When ingested by susceptible larvae they rapidly lyse epithelial cells lining the midgut. In vitro the toxins lyse certain insect cell lines and show saturable, high-affinity binding to brush-border membrane vesicles (BBMVs) prepared from insect midguts. We observed that the sugar N-acetyl galactosamine (GalNAc) specifically decreased the cytolytic activity of a CryIA(c) toxin towards Choristoneura fumiferana CF1 cells, completely abolished toxin binding to Manduca sexia BBMVs, partially inhibited binding to Heliothis virescens BBMVs and had no apparent effect on binding to Pieris brassicae BBMVs. In ligand blotting experiments the toxin bound proteins of 120 kDa in M. sexta, 125 kDa in P. brassicae and numerous proteins in H. zea. Toxin binding to these proteins was specifically inhibited by GalNAc. The toxin binding proteins of M. sexta and H. zea also bound the lectin soybean agglutinin. Taken together these findings suggest that N-acetyl galactosamine might be a component of a CryIA(c) toxin receptor of CF1 cells and of at least two of the insects tested.  相似文献   

12.
The Bacillus thuringiensis cryIA(a) and cryIA(c) gene specificity regions were probed by creating and testing hybrid toxins both in vivo and in vitro against cultured insect cells or dissociated midgut epithelial cells. Toxin threshold dose determinations revealed that CryIA(c) is highly active against cultured Choristoneure fumiterana cells (CF-1) whereas CryIA(a) is nontoxic. In live insect bioassays, a reversed order of toxicity was observed. Hybrid analysis reversed that the CryIA(c) toxicity-determining region is located between codons 258 and 510. Two smaller subsections of this region (residues 258–358 and 450–510) were able to confer toxicity, although at lower levels, and one region (358–450) was present where progressive substitutions of CryIA(a) with cryIA(c) sequences had no effect. Exchanging the non-homologous N-terminal regions of CryIA(c) with CryIE suggested that the W-terminus does not play a role in specificity. One hybrid clone, MP80, displays a 99.3% homology to CryIA(b) but shows an 800-fold increase in toxicity to CF–1 cells relative to that shown by CryIA(b). Direct comparison between live Bombyx mori bioassays and a newly developed in vitro lawn assay using dissociated midgut epithelial cells from the same insect revealed striking differences in toxicity. The toxicity-determining region for B. mori larvae was determined to be between codons 283 and 450, although the 450–620 codon region may exert an influence on toxicity. In general, native or hybrid toxins showing little or no insect intoxication were very active against the epithelial cells, suggesting that factors other than toxin amino acid sequence play an important role in determining toxin specificity.  相似文献   

13.
The susceptibility of Trichoplusia ni larvae to several Bacillus thuringiensis insecticidal crystal proteins (ICPs) was tested. Neonatal larvae proved to be susceptible to solubilized trypsin-treated CryIA(a), CryIA(b), and CryIA(c) (50% lethal concentrations [LC50s], 570, 480, and 320 ng/cm2, respectively) but showed little susceptibility to CryIB and CryID (LC50s, 5,640 and 2,530 ng/cm2, respectively). The toxicity of ICPs was correlated to binding to the epithelial brush border of the midgut, as revealed by immunocytochemical staining with monoclonal antibodies. In vitro binding experiments with iodinated ICPs and brush border membrane vesicles indicated that CryIA(b) and CryIA(c) share the same high-affinity binding site, whereas CryIA(a) binds to a different one. The affinities of CryIA(b) and CryIA(c) for the binding site were similar (Kd = 3.6 and 4.7 nM, respectively), and the mean binding-site concentration was 0.71 pmol/mg of vesicle protein. Selection of a population with increasing concentrations of CryIA(b) produced 31-fold resistance in seven generations. The realized heritability (h2) was 0.19. The increase of homozygosity (for resistance factors) as selection proceeded was reflected in the increase in the slopes of the dose-mortality curves. Resistance was specific for CryIA(b) and did not extend to CryIA(a) or even to CryIA(c). This result was not predicted by the binding-site model, in which CryIA(b) and CryIA(c) bind to the same high-affinity binding site. This result may suggest a more complicated relationship between in vitro binding of ICPs to specific sites in the epithelial membrane of the midgut and the in vivo toxic effect.  相似文献   

14.
Many subspecies of the soil bacterium Bacillus thuringiensis produce various parasporal crystal proteins, also known as Cry toxins, that exhibit insecticidal activity upon binding to specific receptors in the midgut of susceptible insects. One such receptor, BT-R(1) (210 kDa), is a cadherin located in the midgut epithelium of the tobacco hornworm, Manduca sexta. It has a high binding affinity (K(d) approximately 1nM) for the Cry1A toxins of B. thuringiensis. Truncation analysis of BT-R(1) revealed that the only fragment capable of binding the Cry1A toxins of B. thuringiensis was a contiguous 169-amino acid sequence adjacent to the membrane-proximal extracellular domain. The purified toxin-binding fragment acted as an antagonist to Cry1Ab toxin by blocking the binding of toxin to the tobacco hornworm midgut and inhibiting insecticidal action. Exogenous Cry1Ab toxin bound to intact COS-7 cells expressing BT-R(1) cDNA, subsequently killing the cells. Recruitment of BT-R(1) by B. thuringiensis indicates that the bacterium interacts with a specific cell adhesion molecule during its pathogenesis. Apparently, Cry toxins, like other bacterial toxins, attack epithelial barriers by targeting cell adhesion molecules within susceptible insect hosts.  相似文献   

15.
Zhang R  Hua G  Andacht TM  Adang MJ 《Biochemistry》2008,47(43):11263-11272
Bacillus thuringiensis (Bt) insecticidal toxins bind to receptors on midgut epithelial cells of susceptible insects, and binding triggers biochemical events that lead to insect mortality. Recently, a 100-kDa aminopeptidase N (APN) was isolated from brush border membrane vesicles (BBMV) of Anopheles quadrimaculatus and shown to bind Cry11Ba toxin with surface plasmon resonance (SPR) detection [Abdullah et al. (2006) BMC Biochem. 7, 16]. In our study, a 106-kDa APN, called AgAPN2, released by phosphatidylinositol-specific phospholipase C (PI-PLC) from Anopheles gambiae BBMV was extracted by Cry11Ba bound to beads. The AgAPN2 cDNA was cloned, and analysis of the predicted AgAPN2 protein revealed a zinc-binding motif (HEIAH), three potential N-glycosylation sites, and a predicted glycosylphosphatidylinositol (GPI) anchor site. Immunohistochemistry localized AgAPN2 to the microvilli of the posterior midgut. A 70-kDa fragment of the 106-kDa APN was expressed in Escherichia coli. When purified, it competitively displaced 125I-Cry11Ba binding to An. gambiae BBMV and bound Cry11Ba on dot blot and microtiter plate binding assays with a calculated K d of 6.4 nM. Notably, this truncated peptide inhibited Cry11Ba toxicity to An. gambiae larvae. These results are evidence that the 106-kDa GPI-anchored APN is a specific binding protein, and a putative midgut receptor, for Bt Cry11Ba toxin.  相似文献   

16.
Summary The mammalian intestinal epithelium has been found, based on in vivo experiments, to be resistant to insecticidal Cry toxins, which are derived from Bacillus thuringiensis and fatally damage insect midgut cells. Thus, the toxins are commonly used as a genetic resource in insect-resistant transgenic plants for feed. However, Cry toxins bind to the cellular brush border membrane vescle (BBMV) of mammalian intestinal cells. In this study, we investigated the affinity of Cry1Ab toxin, a lepidopteran-specific Cry1-type toxin, to the cellular BBMV of two mammalian intestinal cells as well as the effect of the toxin on the membrane potential of three mammalian intestinal cells compared to its effects on the silkworm midgut cell. We found that Cry1Ab toxin did bind to the bovine and porcine BBMV, but far more weakly than it did to the silkworm midgut BBMV. Furthermore, although the silkworm midgut cells developed severe membrane potential changes within 1 h following the toxin treatment at a final concentration of 2 μg/ml, no such membraneous changes were observed on the bovine, procine, and human intestinal cells. The present in vitro results suggest that, although Cry1Ab toxin may bind weakly or nonspecifically to certain BBMV components in the mammalian intestinal cell, it does not damage the cell’s membrane integrity, thus exerting no subsequent adverse effects on the cell.  相似文献   

17.
Helicoverpa armigera is one of the most harmful pests in China. Although it had been successfully controlled by Cry1A toxins, some H. armigera populations are building up resistance to Cry1A toxins in the laboratory. Vip3A, secreted by Bacillus thuringiensis, is another potential toxin against H. armigera. Previous reports showed that activated Vip3A performs its function by inserting into the midgut brush border membrane vesicles (BBMV) of susceptible insects. To further investigate the binding of Vip3A to BBMV of H. armigera, the full-length Vip3Aa10 toxin expressed in Escherichia coli was digested by trypsin or midgut juice extract, respectively. Among the fragments of digested Vip3Aa10, only a 62 kDa fragment (Vip3Aa10-T) exhibited binding to BBMV of H. armigera and has insecticidal activity. Moreover, this interaction was specific and was not affected by the presence of Cry1Ab toxin. Binding of Vip3Aa10-T to BBMV resulted in the formation of an ion channel. Unlike Cry1A toxins, Vip3Aa10-T was just slightly associated with lipid rafts of BBMV. These data suggest that although activated Vip3Aa10 specifically interacts with BBMV of H. armigera and forms an ion channel, the mode of action of it may be different from that of Cry1A toxins.  相似文献   

18.
We have evaluated the binding of Bacillus thuringiensis Cry toxins to aminopeptidase N (APN) purified from Lymantria dispar (gypsy moth) brush border membrane vesicle (BBMV). CryIAc toxin bound strongly to APN, while either the structurally related CryIAa and CryIAb toxins or CryIC, CryIIA, and CryIIIA toxins showed weak binding to APN. An in vitro competition binding study demonstrated that the binding of CryIAc to L. dispar BBMV was inhibited by APN. Inhibition of short circuit current for CryIAc, measured by voltage clamping of whole L. dispar midgut, was substantially reduced by addition of phosphatidylinositol-specific phospholipase C, which is known to release APN from the midgut membrane. In contrast, addition of phosphatidylinositol-specific phospholipase C had only a marginal effect on the inhibition of short circuit current for CryIAa. These data suggest that APN is the major functional receptor for CryIAc in L. dispar BBMV. A ligand blotting experiment demonstrated that CryIAc recognized a 120-kDa peptide (APN), while CryIAa and CryIAb recognized a 210-kDa molecule in L. dispar BBMV. In contrast, CryIAa and CryIAb bound to both the 120- and 210-kDa molecules in Manduca sexta BBMV, while CryIAc recognized only the 120-kDa peptide. The 120-kDa peptide (APN) in L. dispar BBMV reacted with soybean agglutinin, indicating that N-acetylgalactosamine is a component of this glycoprotein.  相似文献   

19.
Insecticidal crystal proteins (delta-endotoxins), CryIA(a) and CryIA(c), from Bacillus thuringiensis are 82% homologous. Despite this homology, CryIA(c) was determined to have 10-fold more insecticidal activity toward Heliothis virescens and Trichoplusia ni than CryIA(a). Reciprocal recombinations between these two genes were performed by the homolog-scanning technique. The resultant mutants had different segments of their primary sequences exchanged. Bioassays with toxin proteins from these mutants revealed that amino acids 335-450 on CryIA(c) are associated with the activity against T. ni, whereas amino acids 335-615 on the same toxin are required to exchange full H. virescens specificity. One chimeric protein toxin, involving residues 450-612 from CryIA(c), demonstrated 30 times more activity against H. virescens than the native parental toxin, indicating that this region plays an important role in H. virescens specificity. The structural integrity of mutant toxin proteins was assessed by treatment with bovine trypsin. All actively toxic proteins formed a 65-kDA trypsin-resistant active toxic core, similar to the parental CryIA(c) toxin, indicating that toxin protein structure was not altered significantly. Contrarily, certain inactive mutant proteins were susceptible to complete protease hydrolysis, indicating that their lack of toxicity may have been due to structural alterations.  相似文献   

20.
The insecticidal crystal proteins of Bacillus thuringiensis show a high degree of specificity. In vitro binding studies with several crystal proteins demonstrated a correlation between toxicity and binding to receptors of larval midgut epithelial cells. In order to study the domain-function relationships of the toxic fragment, hybrid crystal proteins based on CryIA(b) and CryIC were constructed. Two out of 11 hybrid proteins constructed exhibited insecticidal activity. Both dispalyed an insecticidal spectrum similar to that of the parental crystal protein from which the C-terminal part of the toxic fragment originated. In addition, in vitro binding studies directly demonstrated the involvement of the C-terminal part of the toxic fragment in receptor binding. These results demonstrate that the C-terminal part of the toxic fragment determines specific receptor binding, which in turn determines, to a large extent, the insect specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号