首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor binding studies were performed with 125I-labeled trypsin-activated insecticidal toxins, CryIA(a) and CryIA(c), from Bacillus thuringiensis on brush-border membrane vesicles (BBMV) prepared from Bombyx mori larval midgut. Bioassays were performed by gently force feeding B. mori with diluted toxins. CryIA(a) toxin (LD50; 0.002 micrograms) was 200 times more active against B. mori larvae than CryIA(c) toxin (LD50; 0.421 micrograms) and showed high-affinity saturable binding. The Kd and the binding site concentration for CryIA(a) toxin were 3.5 nM and 7.95 pmol/mg, respectively. CryIA(c) toxin (Kd, 50.35 nM; Bmax, 2.85 pmol/mg) did not demonstrate high-affinity binding to B. mori BBMV. Control experiments with CryIA(a) and CryIA(c) toxins revealed no binding to mouse small intestine BBMV and nonspecific binding to pig kidney BBMV. These data provide evidence that binding to a specific receptor on the membrane of midgut epithelial cells is an important determinant with respect to differences in insecticidal spectrum of insecticidal crystal proteins. To locate a B. mori receptor binding region on the CryIA(a) toxin, homologous and heterologous competition binding studies were performed with a set of mutant proteins which had previously been used to define the B. mori "specificity domain" on this toxin (Ge, A. Z., Shivarova, N. I., and Dean, D. H. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4037-4041). These mutant proteins have had regions of their genes reciprocally exchanged with the cryIA(c) gene. A B. mori receptor binding region on CryIA(a) toxin includes the amino-terminal portion of the hypervariable region, amino acids 332-450, which is identical to the previously described B. mori specificity determining region. These data provide direct evidence that delta-endotoxins contain a tract of amino acids that comprise a binding region and as a results determines the specificity of a toxin.  相似文献   

2.
Genes encoding insecticidal crystal proteins were cloned from three strains of Bacillus thuringiensis subsp. kenyae and two strains of B. thuringiensis subsp. kurstaki. Characterization of the B. thuringiensis subsp. kenyae toxin genes showed that they are most closely related to cryIA(c) from B. thuringiensis subsp. kurstaki. The cloned genes were introduced into Bacillus host strains, and the spectra of insecticidal activities of each Cry protein were determined for six pest lepidopteran insects. CryIA(c) proteins from B. thuringiensis subsp. kenyae are as active as CryIA(c) proteins from B. thuringiensis subsp. kurstaki against Trichoplusia ni, Lymantria dispar, Heliothis zea, and H. virescens but are significantly less active against Plutella xylostella and, in some cases, Ostrinia nubilalis. The sequence of a cryIA(c) gene from B. thuringiensis subsp. kenyae was determined (GenBank M35524) and compared with that of cryIA(c) from B. thuringiensis subsp. kurstaki. The two genes are more than 99% identical and show seven amino acid differences among the predicted sequences of 1,177 amino acids.  相似文献   

3.
To investigate the specificity of Bacillus thuringiensis var. kurstaki strain HD1 insecticidal crystal proteins (ICP), we used membrane preparations obtained from the midgut of Heliothis virescens larvae to perform separate ligand-blot experiments with the three activated CryIA toxins. The CryIA(a) and the CryIA(b) toxins bind the same 170-kDa protein, but most likely at two different binding sites. The CryIA(c) toxin binds two proteins of molecular masses 140 kDa and 120 kDa. We also demonstrate that the binding proteins for each of the B. thuringiensis toxins are not part of a covalent complex. Although the 170-kDa protein is a glycoprotein, endoglycosidase treatment does not prevent the binding of the CryIA(a) or CryIA(b) toxin. This indicates that the sugars are not important for the binding of these toxins. A model for a protein complex binding the B. thuringiensis HD1 ICPs is presented. Our results support the idea that binding proteins on membranes of the gut epithelial cells of H. virescens larvea are important for the specificity of the bacterial toxins.  相似文献   

4.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

5.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

6.
The lepidopteran-specific, insecticidal crystal proteins of Bacillus thuringiensis vary in toxicity to different species of lepidopteran larvae. We report studies of CryIA(a) and CryIA(c), two related proteins that have different degrees of toxicity to Heliothis virescens yet very similar degrees of toxicity to Manduca sexta. The amino acid differences between these proteins are located primarily between residues 280 and 722. We have constructed a series of chimeric proteins and determined their toxicities to both insects. The most significant findings arise from the replacement of three segments of the cryIA(c) gene with homologous portions of the cryIA(a) gene: codons 332-428, 429-447, and 448-722. Each of these segments contributed substantially and largely additively toward efficacy for H. virescens. However, replacement of the 429-447 segment of cryIA(c) gene with the cryIA(a) sequence resulted in a 27-50-fold reduction in toxicity toward M. sexta whereas the reduction in toxicity to H. virescens was only 3-4-fold. Subdivision of the 429-447 segment and replacements involving residues within this segment reduced toxicity to M. sexta by 5- to more than 2000-fold whereas toxicity to H. virescens was only reduced 3-10-fold. These observations indicate that: 1) different but overlapping regions of the cryIA(c) gene determine specificity to each of the two test insects; 2) some of the examined gene segments interact in determining specificity; and 3) different sequences in the cryIA(a) and cryIA(c) genes are required for maximal toxicity to M. sexta.  相似文献   

7.
Bacillus thuringiensis Cry protein exerts its toxic effect through a receptor-mediated process. Both aminopeptidases and cadherin proteins were identified as putative Cry1A receptors from Heliothis virescens and Manduca sexta. The importance of cadherin was implied by its correlation with a Cry1Ac resistant H. virescens strain (Gahan, L. J., Gould, F., and Heckel, D. G. (2001) Science 293, 857-860). In this study, the Cry1Ac toxin-binding region in H. virescens cadherin was mapped to a 40-amino-acid fragment, from amino acids 1422 to 1440. This site overlaps with a Cry1Ab toxin-binding site, amino acids 1363-1464 recently reported in M. sexta (Hua, G., Jurat-Fuentes, J. L., and Adang, M. J. (2004) J. Biol. Chem. 279, 28051-28056). Further, feeding of the anti-H. virescens cadherin antiserum or the partial cadherins, which contain the toxin-binding region, in combination with Cry1Ab/Cry1Ac reduced insect mortality by 25.5-55.6% to first instar H. virescens and M. sexta larvae, suggesting a critical function for this cadherin domain in insect toxicity. Mutations in this region, to which the Cry1Ac binds through its loop 3, resulted in the loss of toxin binding. For the first time, we show that the cadherin amino acids Leu(1425) and Phe(1429) are critical for Cry1Ac toxin interaction, and if substituted with charged amino acids, result in the loss of toxin binding, with a K(D) of < 10(-5) m. Mutation of Gln(1430) to an alanine, however, increased the Cry1Ac affinity 10-fold primarily due to an increase on rate. The L1425R mutant can result from a single nucleotide mutation, CTG --> CGG, suggesting that these mutants, which have decreased toxin binding, may lead to Cry1A resistance in insects.  相似文献   

8.
Proteins synthesized by the bacterium Bacillus thuringiensis are potent insecticides. When ingested by susceptible larvae they rapidly lyse epithelial cells lining the midgut. In vitro the toxins lyse certain insect cell lines and show saturable, high-affinity binding to brush-border membrane vesicles (BBMVs) prepared from insect midguts. We observed that the sugar N-acetyl galactosamine (GalNAc) specifically decreased the cytolytic activity of a CryIA(c) toxin towards Choristoneura fumiferana CF1 cells, completely abolished toxin binding to Manduca sexia BBMVs, partially inhibited binding to Heliothis virescens BBMVs and had no apparent effect on binding to Pieris brassicae BBMVs. In ligand blotting experiments the toxin bound proteins of 120 kDa in M. sexta, 125 kDa in P. brassicae and numerous proteins in H. zea. Toxin binding to these proteins was specifically inhibited by GalNAc. The toxin binding proteins of M. sexta and H. zea also bound the lectin soybean agglutinin. Taken together these findings suggest that N-acetyl galactosamine might be a component of a CryIA(c) toxin receptor of CF1 cells and of at least two of the insects tested.  相似文献   

9.
Y Li  C Drone  E Sat    H P Ghosh 《Journal of virology》1993,67(7):4070-4077
The spike glycoprotein G of vesicular stomatitis virus (VSV) induces membrane fusion at low pH. We used linker insertion mutagenesis to characterize the domain(s) of G glycoprotein involved in low-pH-induced membrane fusion. Two or three amino acids were inserted in frame into various positions in the extracellular domain of G, and 14 mutants were isolated. All of the mutants expressed fully glycosylated proteins in COS cells. However, only seven mutant G glycoproteins were transported to the cell surface. Two of these mutants, D1 and A6, showed wild-type fusogenic properties. The mutant A2 had a temperature-sensitive defect in the transport of the mutant G glycoprotein to the cell surface. The other four mutants, H2, H5, H10, and A4, although present in cell surface, failed to induce cell fusion when cells expressing these mutant glycoproteins were exposed to acidic pH. These four mutant G proteins could form trimers, indicating that the defect in fusion was not due to defective oligomerization. One of these mutations, H2, is within a region of conserved, uncharged amino acids that has been proposed as a possible fusogenic sequence. The mutation in H5 was about 70 amino acids downstream of the mutation in H2, while mutations in H10 and A4 were about 300 amino acids downstream of the mutation in H2. Conserved sequences were also noted in the H10 and A4 segment. The results suggest that in the case of VSV G glycoprotein, the fusogenic activity may involve several spatially separated regions in the extracellular domain of the protein.  相似文献   

10.
To test our hypothesis that substitution of domain III of Bacillus thuringiensis delta-endotoxin (Cry) proteins might improve toxicity to pest insects, e.g., Spodoptera exigua, in vivo recombination was used to produce a number of cryIA(b)-cryIC hybrid genes. A rapid screening assay was subsequently exploited to select hybrid genes encoding soluble protoxins. Screening of 120 recombinants yielded two different hybrid genes encoding soluble proteins with domains I and II of CryIA(b) and domain III of CryIC. These proteins differed by only one amino acid residue. Both hybrid protoxins gave a protease-resistant toxin upon in vitro activation by trypsin. Bioassays showed that one of these CryIA(b)-CryIC hybrid proteins (H04) was highly toxic to S. exigua compared with the parental CryIA(b) protein and significantly more toxic than CryIC. In semiquantitative binding studies with biotin-labelled toxins and intact brush border membrane vesicles of S. exigua, this domain III substitution appeared not to affect binding-site specificity. However, binding to a 200-kDa protein by CryIA(b) in preparations of solubilized and blotted brush border membrane vesicle proteins was completely abolished by the domain III substitution. A reciprocal hybrid containing domains I and II of CryIC and domain III of CryIA(b) did bind to the 200-kDa protein, confirming that domain III of CryIA(b) was essential for this reaction. These results show that domain III of CryIC protein plays an important role in the level of toxicity to S. exigua, that substitution of domain III may be a powerful tool to increase the repertoire of available active toxins for pest insects, and that domain III is involved in binding to gut epithelium membrane proteins of S. exigua.  相似文献   

11.
The Bacillus thuringiensis cryIA(a) and cryIA(c) gene specificity regions were probed by creating and testing hybrid toxins both in vivo and in vitro against cultured insect cells or dissociated midgut epithelial cells. Toxin threshold dose determinations revealed that CryIA(c) is highly active against cultured Choristoneure fumiterana cells (CF-1) whereas CryIA(a) is nontoxic. In live insect bioassays, a reversed order of toxicity was observed. Hybrid analysis reversed that the CryIA(c) toxicity-determining region is located between codons 258 and 510. Two smaller subsections of this region (residues 258–358 and 450–510) were able to confer toxicity, although at lower levels, and one region (358–450) was present where progressive substitutions of CryIA(a) with cryIA(c) sequences had no effect. Exchanging the non-homologous N-terminal regions of CryIA(c) with CryIE suggested that the W-terminus does not play a role in specificity. One hybrid clone, MP80, displays a 99.3% homology to CryIA(b) but shows an 800-fold increase in toxicity to CF–1 cells relative to that shown by CryIA(b). Direct comparison between live Bombyx mori bioassays and a newly developed in vitro lawn assay using dissociated midgut epithelial cells from the same insect revealed striking differences in toxicity. The toxicity-determining region for B. mori larvae was determined to be between codons 283 and 450, although the 450–620 codon region may exert an influence on toxicity. In general, native or hybrid toxins showing little or no insect intoxication were very active against the epithelial cells, suggesting that factors other than toxin amino acid sequence play an important role in determining toxin specificity.  相似文献   

12.
The insecticidal activity of the CryIA(a), CryIA(b), and CryIA(c) toxins from Bacillus thuringiensis subsp. kurstaki HD-1 was determined in force-feeding experiments with larvae of Choristoneura fumiferana, C. occidentalis, C. pinus, Lymantria dispar, Orgyia leucostigma, Malacosoma disstria, and Actebia fennica. The toxins were obtained from cloned protoxin genes expressed in Escherichia coli. The protoxins were activated with gut juice from Bombyx mori larvae. Biological activity of the individual gene products as well as the native HD-1 toxin was assessed as the dose which prevented 50% of the insects from producing frass within 3 days (frass failure dose [FFD50]). The three toxins were about equally active against M. disstria. In the Choristoneura species, CryIA(a) and CryIA(b) were up to fivefold more toxic than CryIA(c). In the lymantriid species, CryIA(a) and CryIA(b) were up to 100-fold more toxic than CryIA(c). The toxicity of HD-1 was similar to that of the individual CryIA(a) or CryIA(b) toxins in all of these species. None of the CryIA toxins or HD-1 exhibited and toxicity towards A. fennica. Comparison of the observed FFD50 of HD-1 with the FFD50 expected on the basis of its crystal composition suggested a possible synergistic effect of the toxins in the two lymantriid species. Our results further illustrate the diversity of activity spectra of these highly related proteins and provide a data base for studies with forest insects to elucidate the molecular basis of toxin specificity.  相似文献   

13.
A I Aronson  D Wu    C Zhang 《Journal of bacteriology》1995,177(14):4059-4065
Two different 30-nucleotide regions of the cryIAc insecticidal protoxin gene from Bacillus thuringiensis were randomly mutagenized. One region was within one of seven amphipathic helices believed to be important for the formation of ion channels. There was no loss of toxicity for three test insects by any of 27 mutants, a result similar to that obtained previously for mutations within another such helix. Only mutations within a region encoding the central helix have resulted in a substantial number of mutants with low or no toxicity. A second mutagenized region encodes amino acids which are unique to this toxin and are within one of the loops in a portion of the toxin important for specificity. Among 21 different mutations of these 10 residues, only changes of two adjacent serine residues resulted in decreased toxicity which was greater for Manduca sexta than for Heliothis virescens larvae. These mutant toxins bound poorly to the single M. sexta CryIAc vesicle-binding protein and to several of the multiple H. virescens-binding proteins. The loop containing these serines must be involved in the formation of a specific toxin recognition domain.  相似文献   

14.
The binding proteins, or receptors, for insecticidal Bacillus thuringiensis subsp. kurstaki delta-endotoxins are located in the brush border membranes of susceptible insect midguts. The interaction of one of these toxins, CryIA(c), with proteins isolated from Heliothis virescens larval midguts was investigated. To facilitate the identification of solubilized putative toxin-binding proteins, a solid-phase binding assay was developed and compared with toxin overlay assays. The overlay assays demonstrated that a number of proteins of 170, 140, 120, 90, 75, 60, and 50 kDa bound the radiolabeled CryIA(c) toxin. Anion-exchange fractionation allowed the separation of these proteins into three toxin binding fractions, or pools. Toxin overlay assays demonstrated that although the three pools had distinct protein profiles, similar-size proteins could be detected in these three pools. However, determination of toxin affinity by using the solid-phase binding assay showed that only one of the three pools contained high-affinity binding proteins. The Kd obtained, 0.65 nM, is similar to that of the unsolubilized brush border membrane vesicles. Thus, the solid-phase binding assay in combination with the toxin overlay assay facilitates the identification and purification of high-affinity B. thuringiensis toxin-binding proteins from the insect midgut.  相似文献   

15.
Functionally important amino acids in rice sucrose transporter OsSUT1   总被引:2,自引:0,他引:2  
Sun Y  Lin Z  Reinders A  Ward JM 《Biochemistry》2012,51(15):3284-3291
Six conserved, charged amino acids within membrane spans in rice sucrose transporter OsSUT1 were identified using a three-dimensional structural model based on the crystal structures of three major facilitator superfamily (MFS) proteins: LacY, GlpT, and EmrD. These positions in OsSUT1 were selected for mutagenesis and biochemical assays. Among the six mutants, D177N completely lost transport function, D331N retained only a small fraction of sucrose uptake activity (2.3% of that of the wild type), and R335H and E336Q also displayed a substantial decrease in transport activity. D329N functioned as well as wild-type OsSUT1. R188K did not transport sucrose but showed a H(+) leak that was inhibited by sucrose, indicating that R188K had uncoupled sucrose and H(+) translocation. This demonstrates that charged amino acids within membrane spans are important for the transport mechanism of OsSUT1 as they are in lactose permease.  相似文献   

16.
The amino acid sequences necessary for entomocidal activity of the CryIA(b) protoxin of Bacillus thuringiensis were determined. Introduction of stop codons behind codons Arg601, Phe604 or Ala607 showed that amino acid residues C-terminal to Ala607 are not required for insecticidal activity and that activation by midgut proteases takes place distal to Ala607. The two shortest polypeptides, deleted for part of the highly conserved β-strand, were prone to proteolytic degradation, explaining their lack of toxicity. Apparently, this β-strand is essential for folding of the molecule into a stable conformation. Proteolytic activation at the N-terminus was investigated by removing the first 28 codons, resulting in a translation product extending from amino acid 29 to 607. This protein appeared to be toxic not only to susceptible insect larvae such as Manduca sexta and Heliothis virescens, but also to Escherichia coli cells. An additional mutant, encoding only amino acid residues 29–429, encompassing the complete putative pore forming domain, but lacking a large part of the receptor-binding domain, was similarly toxic to E. coli cells. This suggests a role for the N-terminal 28 amino acids in rendering the toxin inactive in Bacillus thuringiensis, and indicates that the cytolytic potential of the pore forming domain is only realized after proteolytic removal of these residues by proteases in the insect gut. In line with this hypothesis are results obtained with a mutant protein in which Arg28 at the cleavage site was replaced by Asp. This substitution prevented the protein from being cleaved by trypsin in vitro, and reduced its toxicity to M. sexta larvae.  相似文献   

17.
A colony of Plutella xylostella from crucifer fields in Florida was used in mortality bioassays with HD-1 spore, CryIA(a), CryIA(b), CryIA(c), CryIB, CryIC, CryID, CryIE, or CryIIA. The data revealed high levels of field-evolved resistance to HD-1 spore and all CryIA protoxins and no resistance to CryIB, CryIC, or CryID. CryIE and CryIIA were essentially not toxic. When HD-1 spore was combined 1:1 with protoxin and fed to susceptible larvae, spore synergized the activity of CryIA and CryIC 5- to 8-fold and 1.7-fold, respectively, and did not synergize the mortality of CryIIA. When fed to Florida larvae, spore failed to synergize the activity of all three CryIA protoxins, synergized the activity of CryIC 5.3-fold, and did not synergize the mortality for CryIIA. Binding studies with CryIA(b), CryIB, and CryIC were performed to determine possible mechanisms of resistance. The two techniques used were (i) binding of biotinylated toxin to tissue sections of larval midguts and (ii) binding of biotinylated toxin to brush border membrane vesicles prepared from whole larvae. Both showed dramatically reduced binding of CryIA(b) in resistant larvae compared with that in susceptible larvae but no differences in binding of CryIB or CryIC.  相似文献   

18.
Binding of three Bacillus thuringiensis insecticidal crystal proteins (ICPs) to the midgut epithelium of Ostrinia nubilalis larvae was characterized by performing binding experiments with both isolated brush border membrane vesicles and gut tissue sections. Our results demonstrate that two independent ICP receptors are present in the brush border of O. nubilalis gut epithelium. From competition binding experiments performed with I-labeled and native ICPs it was concluded that CryIA(b) and CryIA(c) are recognized by the same receptor. An 11-fold-higher binding affinity of CryIA(b) for this receptor correlated with a 10-fold-higher toxicity of this ICP compared with CryIA(c). The CryIB toxin did not compete for the binding site of CryIA(b) and CryIA(c). Immunological detection of ingested B. thuringiensis ICPs on gut sections of O. nubilalis larvae revealed binding only along the epithelial brush border membrane. CryID and CryIE, two ICPs that are not toxic to O. nubilalis, were not bound to the apical microvilli of gut epithelial cells. In vitro binding experiments performed with native and biotinylated ICPs on tissue sections confirmed the correlation between ICP binding and toxicity. Moreover, by performing heterologous competition experiments with biotinylated and native ICPs, it was confirmed that the CryIB receptor is different from the receptor for CryIA(b) and CryIA(c). Retention of activated crystal proteins by the peritrophic membrane was not correlated with toxicity. Furthermore, it was demonstrated that CryIA(b), CryIA(c), and CryIB toxins interact in vitro with the epithelial microvilli of Malpighian tubules. In addition, CryIA(c) toxin also adheres to the basement membrane of the midgut epithelium.  相似文献   

19.
RLIP76 (RALBP1) is a multifunctional transporter involved in signaling and transmembrane movement of solute allocrites, which include glutathione conjugates and several natural product antineoplastic agents [Awasthi, S., et al. (2000) Biochemistry 39, 9327-9334; (2001) Biochemistry 40, 4159-4168]. Our previous studies suggested that the membrane-anchoring domain resides in the N-terminus of RLIP76, despite the lack of identifiable membrane-spanning domains. Amino acid sequence analysis indicated that this region of RLIP76 contains sequences that are similar to those of vector peptides. We, therefore, have studied the effect of a series of deletion mutant proteins on hydrophobicity and transport activity. RLIP76 or one of its derived deletion mutants was expressed in Escherichia coli, and bacteria were lysed and extracted in buffer without or with the nonionic detergent polidocanol. The ratio of RLIP76 in the detergent/aqueous extracts was found to be 2.5 for the wild-type protein, but decreased to 0.7 in the mutant in which amino acids 154-219 were deleted. Deletion of only one segment of this region (amino acids 171-185) alone resulted in a significant decrease in this ratio to 1.0. For the mutants with deletions within the region from amino acid 154 to 219, loss of hydrophobicity correlated with less incorporation of mutants into artificial liposomes, and decreased transport activity toward doxorubicin and dinitrophenyl-S-glutathione. In contrast, deletion of one of the two ATP-binding sites (at amino acids 65-80 or 415-448) or both sites did not affect hydrophobicity but reduced or abrogated transport activity. NSCLC (H358) stably transfected with del171-185 and del154-219 showed that loss of these regions results in a decrease in the extent of membrane association of RLIP76. Confocal laser immunohistochemistry colocalized amino acids 171-185 with her2/neu on the cell surface. Depletion of wild-type RLIP76 using si-RNA directed to this region in cells transfected with del171-185 resulted in the loss of cell surface expression. These finding demonstrate that amino acids 171-185 constitute a cell surface epitope which is necessary for optimal transport of anthracycline and glutathione conjugates by RLIP76, and that this peptide could be a novel target for antineoplastic therapy.  相似文献   

20.
The mosquito-larvicidal binary toxin from Bacillus sphaericus is composed of two polypeptides called BinA and BinB with molecular masses of approximately 42 and 51 kDa. Both components are required for full activity, with BinB acting as a specificity determinant and BinA being responsible for toxic action. To investigate the role of the selected charged residues in BinA, four mutants were generated by replacing charged amino acids with alanine (R97A, E98A, R101A, and E114A). All mutant proteins were produced at high levels and formed inclusion bodies similar to that of the wild type. Mosquito-larvicidal assays against Culex quinquefasciatus larvae revealed that the mutant R97A completely lost its activity and mutants E98A, R101A, and E114A showed significantly reduced toxicity. Intrinsic fluorescence spectroscopy analysis indicated that alanine substitutions at these positions did not alter the overall structure of the toxin. Binding of the mutants to BinB was not different from that of the wild type, suggesting that these mutations did not affect BinA-BinB interaction. Results demonstrated that R97, E98, R101, and E114 neither play a direct role in maintenance of BinA structure nor are involved in BinA-BinB interaction. Since these residues are required for full activity, they may play an important role during toxin internalization and/or toxic action of BinA inside the target cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号