首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We have demonstrated that nerve growth factor (NGF) expression in the myocardium is selectively increased during chronic stage of myocardial infarction, resulting in sympathetic hyperinnervation. Glycogen synthase kinase-3 (GSK-3) signal has been shown to play key roles in the regulation of cytoskeletal assembly during axon regeneration. We assessed whether lithium, a GSK-3 inhibitor, attenuates cardiac sympathetic reinnervation after myocardial infarction through attenuated NGF expression and Tau expression. Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to either LiCl or SB216763, chemically unrelated inhibitors of GSK-3β, a combination of LiCl and SB216763, or vehicle for four weeks. Myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats compared with sham-operated rats, consistent with excessive sympathetic reinnervation after infarction. Immunohistochemical analysis for sympathetic nerve also confirmed the change of myocardial norepinephrine. This was paralleled by a significant upregulation of NGF protein and mRNA in the vehicle-treated rats, which was reduced after administering either LiCl, SB216763, or combination. Arrhythmic scores during programmed stimulation in the vehicle-treated rats were significantly higher than those treated with GSK-3 inhibitors. Addition of SB216763 did not have additional beneficial effects compared with those seen in rats treated with LiCl alone. Furthermore, lithium treatment increased Tau1 and decreased AT8 and AT180 levels. Chronic use of lithium after infarction, resulting in attenuated sympathetic reinnervation by GSK-3 inhibition, may modify the arrhythmogenic response to programmed electrical stimulation.  相似文献   

2.
Endothelin-1 (ET-1) has been implicated in hypertension, heart failure, atherosclerosis, and pulmonary hypertension. In all these conditions, plasma immunoreactive ET-1 levels are elevated, and tissue ET-1 expression is increased. Clinical trials have demonstrated potentially important benefits of ET antagonism among patients with essential hypertension, pulmonary hypertension, and heart failure. It is unknown whether ET antagonism affects the production of ET-1 in stroke-prone spontaneously hypertensive rat (SHRSP) heart at the typical hypertensive stage. The objective of this study was to investigate the effects of ET blockade on the expression levels of plasma and cardiac ET-1 in SHRSPs. SHRSPs were treated for 3 months with SB209670 (ET(A)/ET(B) dual receptor antagonist) or with saline (vehicle) commencing at the prehypertensive stage (age 6 weeks). Plasma and left ventricular ET-1 peptide levels were measured using enzyme-linked immunoabsorbent assay. Compared with age-matched control Wistar-Kyoto rats, peptide levels of ET-1 were significantly upregulated in vehicle-treated SHRSP heart; this upregulation was reversed by long-term ET antagonism. Plasma ET-1 levels were also significantly increased in vehicle-treated SHRSPs and were normalized by ET antagonism. mRNA expression of preproET-1, which is the source of ET-1 peptide production, was significantly increased in vehicle-treated SHRSP heart and was normalized by ET antagonism. Marked cardiac hypertrophy and fibrosis at the histologic level in SHRSPs were ameliorated by ET antagonism, and left ventricular hypertrophy as seen on echocardiography in SHRSPs was suppressed by ET blockade. After ET antagonism, systolic blood pressures were reduced in SHRSPs; diastolic blood pressures were unchanged. The reversal effect of the upregulated ET system in SHRSP heart by ET antagonism might be independent of blood pressure change. By suppressing the upregulated ET system, ET antagonism might be beneficial in arresting cardiac remodeling.  相似文献   

3.
Superoxide has been shown to play a major role in ventricular remodeling and arrhythmias after myocardial infarction. However, the source of increased myocardial superoxide production and the role of superoxide in sympathetic innervation remain to be further characterized. Male Wistar rats, after coronary artery ligation, were randomized to vehicle, allopurinol, or apocynin for 4weeks. To determine the role of peroxynitrite in sympathetic reinnervation, we also used 3-morpholinosydnonimine (a peroxynitrite generator). The postinfarction period was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine, xanthine oxidase activity, NADPH oxidase activity, and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Sympathetic hyperinnervation was blunted after administration of allopurinol. Arrhythmic scores in the allopurinol-treated infarcted rats were significantly lower than those in vehicle. For similar levels of ventricular remodeling, apocynin had no beneficial effects on oxidative stress, sympathetic hyperinnervation, or arrhythmia vulnerability. Allopurinol-treated hearts had significantly decreased nerve growth factor expression, which was substantially increased after coadministration of 3-morpholinosydnonimine. These results indicate that xanthine oxidase but not NADPH oxidase largely mediates superoxide production after myocardial infarction. Xanthine oxidase inhibition ameliorates sympathetic innervation and arrhythmias possibly via inhibition of the peroxynitrite-mediated nerve growth factor pathway.  相似文献   

4.
Specific receptor antagonists were used to examine the role of endothelin-1 (ET-1) in the erectile response of the rat. In these studies, intact rats were cannulated to permit the continuous recording of mean arterial pressure (MAP) and intracavernosal pressure (CCP). Erection was induced by electrical stimulation of the autonomic ganglion, which regulates blood flow to the penis. The animals were subjected to intracavernosal injection with vehicle only (Cont) or with an antagonist to the endothelin-A receptor (ET(A)) or to the endothelin-B receptor (ET(B)). Blockade of the ET(A) or the ET(B) had no effect on the erectile response (CCP/MAP) during maximal ganglionic stimulation. When ET-1 was injected into Cont rats, there was a marked vasoconstriction with a sharp rise in MAP and a decline in CCP as the cavernosal arterioles constricted and limited inflow. The injection of the ET(A) antagonist prevented the vasoconstriction after ET-1 injection into Cont rats, whereas blockade of the ET(B) had no effect on the vasoconstrictive effect to ET-1. Similar results were obtained during submaximal ganglionic stimulation. With minimal levels of ganglionic stimulation, ET-1 injection led to a moderated degree of vasodilation in the presence of the ET(A) antagonist. The ET(B) antagonist failed to alter the CCP response during minimal stimulation, but it did have a marked effect on the MAP response to ET-1 injection. The results of these studies confirm that cavernosal tissue of the rat penis is highly responsive to ET-1. However, the failure of the ET-1 antagonists to affect penile erection in response to ganglionic stimulation reflects a minimal role of ET-1 in the erectile response in the rat.  相似文献   

5.
Trigeminal neuropathic pain, which is associated with marked orofacial mechanical allodynia, is frequently refractory to currently available drugs. Because endothelins (ETs) can contribute to nociceptive changes in animal models of inflammatory, cancer, and diabetic neuropathic pain, the present study evaluated the influence of ET(A) and ET(B) receptor antagonists on orofacial mechanical allodynia in a rat model of trigeminal neuropathic pain. Unilateral constriction (C) of the infraorbital nerve (ION) caused pronounced and sustained bilateral mechanical allodynia, evaluated by application of von Frey hairs to the vibrissal pad. Mechanical allodynia on postoperative days 12-15 after nerve injury was abolished for up to 90 mins by subcutaneous administration of 2.5 mg/kg morphine, but was fully refractory to intravenous (iv) administration of 10 mg/kg of the dual ET(A) plus ET(B) or selective ET(A) receptor antagonists, bosentan and atrasentan, respectively. In sharp contrast, iv administration of 20 mg/kg of the selective ET(B) receptor antagonist, A-192621, caused a net 61 +/- 15% reduction of mechanical threshold, lasting 2 hrs. Co-injection of atrasentan plus A-192621 did not modify ION injury-induced mechanical allodynia. Injection of 10 pmol ET-1 into the upper lip of naive rats caused ipsilateral mechanical allodynia lasting up to 5 hrs. Thus, ET(B) receptor-mediated mechanisms contribute to orofacial mechanical allodynia induced by CION injury, but, some-how, functional ET(A) receptors are required for expression of the antiallodynic effect of ET(B) receptor blockade.  相似文献   

6.
7.
We assessed whether pravastatin attenuates cardiac sympathetic reinnervation after myocardial infarction through the activation of ATP-sensitive K(+) (K(ATP)) channels. Epidemiological studies have shown that men treated with statins appear to have a lower incidence of sudden death than men without statins. However, the specific factor for this has remained disappointingly elusive. Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to groups treated with either vehicle, nicorandil (a specific mitochondrial K(ATP) channel agonist), pinacidil (a nonspecific K(ATP) channel agonist), pravastatin, glibenclamide (a K(ATP) channel blocker), or a combination of nicorandil and glibenclamide, pinacidil and glibenclamide, or pravastatin and glibenclamide for 4 wk. Myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats at the remote zone compared with sham-operated rats (2.54 +/- 0.17 vs. 1.26 +/- 0.36 mug/g protein, P < 0.0001), consistent with excessive sympathetic reinnervation after infarction. Immunohistochemical analysis for tyrosine hydroxylase, growth-associated factor 43, and neurofilament also confirmed the change of myocardial norepinephrine. This was paralleled by a significant upregulation of tyrosine hydroxylase protein expression and mRNA in vehicle-treated rats, which was reduced after the administration of either nicorandil, pinacidil, or pravastatin. Arrhythmic scores during programmed stimulation in vehicle-treated rats were significantly higher than those treated with pravastatin. In contrast, the beneficial effects of pravastatin were reversed by the addition of glibenclamide, implicating K(ATP) channels as the relevant target. The sympathetic reinnervation after infarction is modulated by the activation of K(ATP) channels. Chronic use of pravastatin after infarction, resulting in attenuated sympathetic reinnervation by the activation of K(ATP) channels, may modify the arrhythomogenic response to programmed electrical stimulation.  相似文献   

8.
Endothelin (ET)-1 has been implicated in the development of cardiac hypertrophy. We investigated the effect of pravastatin on development of ventricular hypertrophy in spontaneously hypertensive rats (SHR) and whether the attenuated hypertrophic effect was via reduced ET-1 expression. Normolipidemic SHR were treated with one of the following therapies for 8 wk: vehicle, the nonselective ET receptor antagonists bosentan, pravastatin, mevalonate, hydralazine, or combination of pravastatin + mevalonate from the age of 8 wk at the very early stage of cardiac hypertrophy. Treatment with bosentan and pravastatin significantly decreased left ventricular mass index for body weight and cardiomyocyte sizes isolated by enzymatic dissociation. The myocardial ET-1 levels and preproET-1 mRNA assessed using real-time quantitative RT-PCR were significantly higher (both P < 0.001) in the SHR compared with Wistar-Kyoto rats. The increased tissue ET-1 levels can be inhibited after pravastatin administration. Immunohistochemical analysis confirmed the changes of ET-1. Left ventricular mass index for body weight correlated positively with tissue ET-1 levels (P = 0.0004). A dissociation between the effects of blood pressure and cardiac structure was noted, because pravastatin and hydralazine reduced arterial pressure similarly. Pravastatin-induced effects were reversed by the addition of mevalonate. In conclusion, these results suggest a crucial role of cardiac endothelin system in the early development of ventricular hypertrophy in the SHR. Pravastatin is endowed with cardiac antihypertropic properties that are independent of its hemodynamic and hypolipidemic effects and appear to be related to their capacity to decrease cardiac ET-1 levels, which is linked to mevalonate metabolism.  相似文献   

9.
There is controversy on the role of endothelin (ET)-1 in the mechanism of hypoxic pulmonary vasoconstriction (HPV). Although HPV is inhibited by ET-1 subtype A (ET(A))-receptor antagonists in animals, it has been reported that ET(A)-receptor blockade does not affect HPV in isolated lungs. Thus we reassessed the role of ET-1 in HPV in both rats and isolated blood- and physiological salt solution (PSS)-perfused rat lungs. In rats, the ET(A)-receptor antagonist BQ-123 and the nonselective ET(A)- and ET(B)-receptor antagonist PD-145065, but not the ET(B)-receptor antagonist BQ-788, inhibited HPV. Similarly, BQ-123, but not BQ-788, attenuated HPV in blood-perfused lungs. In PSS-perfused lungs, either BQ-123, BQ-788, or the combination of both attenuated HPV equally. Inhibition of HPV by combined BQ-123 and BQ-788 in PSS-perfused lungs was prevented by costimulation with angiotensin II. The ATP-sensitive K(+) (K(ATP))-channel blocker glibenclamide also prevented inhibition of HPV by BQ-123 in both lungs and rats. These results suggest that ET-1 contributes to HPV in both isolated lungs and intact animals through ET(A) receptor-mediated suppression of K(ATP)-channel activity.  相似文献   

10.
Endothelin-1 (ET-1) is elevated in chronic heart failure (CHF). In this study, we determined the effects of chronic ET-1 blockade on renal sympathetic nerve activity (RSNA) in conscious rabbits with pacing-induced CHF. Rabbits were chronically paced at 320--340 beats/min for 3--4 wk until clinical and hemodynamic signs of CHF were present. Resting RSNA and arterial baroreflex control of RSNA were determined. Responses were determined before and after the ET-1 antagonist L-754,142 (a combined ET(A) and ET(B) receptor antagonist, n = 5) was administered by osmotic minipump infusion (0.5 mg. kg(-1) x h(-1) for 48 h). In addition, five rabbits with CHF were treated with the specific ET(A) receptor antagonist BQ-123. Baseline RSNA (expressed as a percentage of the maximum nerve activity during sodium nitroprusside infusion) was significantly higher (58.3 +/- 4.9 vs. 27.0 +/- 1.0, P < 0.001), whereas baroreflex sensitivity was significantly lower in rabbits with CHF compared with control (3.09 +/- 0.19 vs. 6.04 +/- 0.73, P < 0.001). L-754,142 caused a time-dependent reduction in arterial pressure and RSNA in rabbits with CHF. In addition, BQ-123 caused a reduction in resting RSNA. For both compounds, RSNA returned to near control levels 24 h after removal of the minipump. These data suggest that ET-1 contributes to sympathoexcitation in the CHF state. Enhancement of arterial baroreflex sensitivity may further contribute to sympathoinhibition after ET-1 blockade in heart failure.  相似文献   

11.
Several studies have indicated an interaction between the renin-angiotensin (ANG II) system and endothelin (ET) in the regulation of vascular tone. Previously, we have shown that both ET and ANG II exert a vasoconstrictor influence on the coronary resistance vessels of awake normal swine. Here, we investigated whether the interaction between ANG II and ET exists in the control of coronary resistance vessel tone at rest and during exercise using single and combined blockade of angiotensin type 1 (AT(1)) and ET(A)/ET(B) receptors. Since both circulating ANG II and ET levels are increased after myocardial infarction (MI), we investigated if the interaction between these systems is altered after MI. In awake healthy swine, coronary vasodilation in response to ET(A)/ET(B) receptor blockade in the presence of AT(1) blockade was similar to vasodilation produced by ET(A)/ET(B) blockade under control conditions. In awake swine with a 2- to 3-wk-old MI, coronary vasodilator responses to individual AT(1) and ET(A)/ET(B) receptor blockade were virtually abolished, despite similar coronary arteriolar AT(1) and ET(A) receptor expression compared with normal swine. Unexpectedly, in the presence of AT(1) blockade (which had no effect on circulating ET levels), ET(A)/ET(B) receptor blockade elicited a coronary vasodilator response. These findings suggest that in normal healthy swine the two vasoconstrictor systems contribute to coronary resistance vessel control in a linear additive manner, i.e., with negligible cross-talk. In contrast, in the remodeled myocardium, cross-talk between ANG II and ET emerges, resulting in nonlinear redundant control of coronary resistance vessel tone.  相似文献   

12.
The effects of nonselective ET(A)/ET(B) receptor blockade with intravenous bolus injection of bosentan (10 mg/kg) on renal excretory function and blood pressure were investigated in conscious, male, normotensive Wistar rats before and one week after bilateral renal denervation. Renal denervation was followed by an increase in urine flow rate from 4.54+/-0.38 to 5.72+/-0.36 microl/min x 100 g b.w. (p<0.05) and a decrease in urine osmolality from 855.5+/-44.6 to 707.4+/-47.5 mosm/kg H(2)O (p<0.05). Bosentan administration in sham-operated rats resulted in decrease in urine flow rate from 4.54+/-0.38 to 3.49+/-0.34 microl/min x 100 g b.w. (p<0.05), and increase in urine osmolality from 855.5+/-44.6 to 1075.0+/-76.1 mosm/kg H(2)O (p<0.05). Sodium excretion decreased from 226.9+/-20.0 to 155.1+/-11.0 nmol/min x 100 g b.w. (p<0.01). Bosentan administration in renal denervated rats did not produce any changes in renal water or electrolyte excrections. Blood pressure, heart rate, clearance of Inulin or clearance of paraaminohippuric acid (PAH) did not change in sham-operated or renal denervated rats during nonselective ET(A)/ET(B) receptor blockade. Bosentan did not alter the baroreflex sensitivity or sympatho-vagal balance in sham-operated or renal denervated rats. In conclusion, an interaction between renal nerves and endothelins appears to be involved in the regulation of the renal excretory function.  相似文献   

13.
Although experimental prevention studies have suggested therapeutic potential of endothelin (ET) antagonists for the treatment of heart failure, the results of clinical trials using ET antagonists on top of standard heart failure medications have been largely disappointing. This experimental study investigated the effects of chronic ET(A) receptor blockade in long-term survivors of myocardial infarction who had developed stable chronic heart failure in the absence of other treatments. Systolic blood pressure, heart rate, organ weights of the right atrium and ventricle, and the lungs were determined, and tissue ET-1 peptide levels were measured in cardiac tissue, lung, and aorta. The results show that chronic blockade of ET(A) receptors stabilizes systolic blood pressure and reverses the heart failure-induced weight increases of right heart chambers and lung. The changes observed occurred independently of tissue ET-1 concentrations and heart rate, suggesting mechanisms independent of local cardiac or pulmonary ET-1 synthesis, which are yet to be identified.  相似文献   

14.
This study investigated, in rabbit papillary muscles (n = 61) and human auricular strips (n = 7), effects of endothelin-1 (ET-1; 0.1-10 nM) on diastolic myocardial properties. ET-1 (1 nM) was also given in the presence of selective ET(A) or ET(B) antagonism, nonselective ET(A)/ET(B) antagonism, and Na(+)/H(+) exchanger inhibition. Effects of 6.3 mM Ca(2+) were also studied. ET-1 dose dependently increased inotropism. In contrast to baseline, in the presence of ET-1, resting tension (RT) decreased, after an isometric twitch, 3.4 +/- 1.4, 6.9 +/- 1.5, and 12.5 +/- 3.1% with 0.1, 1, and 10 nM, respectively, reflecting an increase in myocardial distensibility. ET-1 effects were abolished with selective ET(A) as well as with nonselective ET(A)/ET(B) antagonism, whereas they were still present with ET(B) antagonism. Na(+)/H(+) exchanger inhibition abolished ET-1 effects on distensibility, whereas it only partially inhibited positive inotropic effect. Ca(2+) increased inotropism to a similar extent to ET-1 (1 nM) but did not affect distensibility. ET-1 therefore increased diastolic distensibility of acutely loaded human and nonhuman myocardium. This effect is mediated by ET(A) receptors, requires Na(+)/H(+) exchanger activation, and cannot be elicited by Ca(2+).  相似文献   

15.
Recently it was demonstrated that treatment with a nonselective endothelin (ET) receptor antagonist significantly reduces myocardial infarct size, which suggests a major role for ET in tissue repair following myocardial infarction (MI). Tissue repair and remodeling found at the site of MI are mainly attributed to myofibroblasts (myoFbs), which are phenotypically transformed fibroblasts that express alpha-smooth muscle actin. It is unclear whether myoFbs generate ET peptides and consequentially regulate pathophysiological functions de novo through expression of the ET-1 precursor (prepro-ET-1), ET-converting enzyme-1 (ECE-1), a metalloprotease that is required to convert Big ET-1 to ET-1 and ET receptors. To address these intriguing questions, we used cultured myoFbs isolated from 4-wk-old MI scar tissue. In cultured cells, we found: 1) expression of mRNA for ET precursor gene (ppET1), ECE-1, and ETA and ETB receptors by semiquantitative RT-PCR; 2) phosphoramidon-sensitive ECE-1 activity, which converts Big ET-1 to biologically active peptide ET-1; 3) expression of ETA and ETB receptors; 4) elaboration of Big ET-1 and ET-1 peptides in myoFb culture media; and 5) upregulation of type I collagen gene expression and synthesis by ET, which was blocked by bosentan (a nonselective ETA- and ETB receptor blocker). These studies clearly indicated that myoFbs express and generate ET-1 and receptor-mediated modulation of type I collagen expression by ET-1. Locally generated ET-1 may contribute to tissue repair of the infarcted heart in an autocrine/paracrine manner.  相似文献   

16.
Bis-sulfonamides as endothelin receptor antagonists   总被引:2,自引:0,他引:2  
Modification of the structure of bosentan 1, the first marketed endothelin receptor antagonist (Tracleer), by introduction of a second sulfonamide function at the alkoxy side chain, led to bis-sulfonamides 2. This allowed to prepare dual ET(A)/ET(B) as well as ET(B) receptor selective antagonists, which could serve as tools to investigate the pharmacological consequences of selective ET(B) receptor blockade.  相似文献   

17.
The effect of three endothelin (ET) agonists [ET-1, ET-3, and sarafotoxin (STX6C)] on the nerve stimulation-induced release of norepinephrine (NE) and neuropeptide Y-immunoreactive compounds (NPY-ir) from the perfused mesenteric arterial bed of the rat as well as the effect on perfusion pressure were examined. ET-1, ET-3, and STX6C all produced a significant, concentration-dependent decrease in the evoked release of NPY-ir but had no effect on the release of NE. In contrast, all three ETs potentiated the nerve stimulation-induced increase in perfusion pressure. The inhibition of nerve stimulation-induced NPY-ir release by ET-1 was significantly blocked by the ET(A)/ET(B) antagonist PD-142893 and the ET(B) antagonist RES-701-1 but not by the ET(A) antagonist BQ-123. The potentiation of the nerve stimulation-induced increase in perfusion pressure by ET-1 was significantly blocked by PD-142893 and BQ-123 and attenuated by RES-701-1. Prior exposure of the preparation to indomethacin or meclofenamate failed to alter the attenuation of the evoked release of NPY-ir or the potentiation of the increase in perfusion pressure produced by ET-1 or ET-3. These results are consistent with the idea that sympathetic cotransmitters can be preferentially modulated by paracrine mediators at the vascular neuroeffector junction.  相似文献   

18.
The contrasting pattern of cardiac inotropy induced by human peptide endothelin-1 (ET-1) has not been satisfactorily explained. It is not clear whether ET-1 is primarily responsible for increased myocardial ET-1 expression and release with resultant inotropic effects, or for the induction of myocardial hypertrophy and heart failure. There are at least two subtypes of endothelin receptors (ET(A) and ET(B)) and the inotropic effects of ET-1 differ depending on the receptor involved. Along with some other groups, we reported significant subtype-ET(B) endothelin receptor down-regulation in human cardiac cells preincubated with endothelin agonists (Drímal et al. 1999, 2000). The present study was therefore designed to clarify the subtype-selective mechanisms underlying the inotropic response to ET-1 and to its ET(B)-selective fragment (8-21)ET-1 in the isolated rat heart. The hearts were subjected to (1-21)ET-1 and to (8-21)ET-1, or to 30 min of stop-flow ischemia followed by 40 min of reperfusion, both before and after selective blockade of endothelin receptors.The present study revealed that both peptides, ET-1 and its (8-21)ET-1 fragment, significantly reduced coronary blood flow in nmolar and higher concentrations. The concomitant negative inotropy and chronotropy were marked after ET-1, while the infusion of the ET-1(8-21) fragment produced a slight but significant positive inotropic effect. Among the four endothelin antagonists tested in continuous infusion only the non-selective PD145065 and ET(B1/B2) selective BQ788 (in molar concentrations) slightly reduced the early contractile dysfunction of the heart induced by ischemia, whereas ET(A)-selective PD155080 partially protected the rat heart on reperfusion.  相似文献   

19.
The levels and activity of protein kinase C and diacylglycerol were shown to be upregulated in diabetes/hyperglycemia; however, studies on the expression of upstream signaling molecules of phosphatidylinositol turnover were lacking. The present study was therefore undertaken to examine whether hyperglycemia/diabetes could also modulate the expression of Gqalpha and phospholipase C-beta (PLC-beta) proteins and associated phosphatidylinositol turnover signaling in aortic vascular smooth muscle cells (VSMCs) and A10 VSMCs exposed to high glucose. Aortic VSMCs from streptozotocin-diabetic rats exhibited an increased expression of Gqalpha and PLC-beta1 proteins (60% and 30%, respectively) compared with control cells as determined by Western blot analysis. The pretreatment of A10 VSMCs with high glucose (26 mM) for 3 days also augmented the levels of Gqalpha, G11alpha, PLC-beta1 and -beta2 proteins by about 50, 35, 30, and 30%, respectively, compared with control cells that were restored to control levels by endothelin-1 (ET-1), ET types A and B (ET(A) and ET(B)) receptors, and angiotensin II type 1 (AT1) receptor antagonists. In addition, ET-1-stimulated inositol triphosphate formation was also significantly higher in VSMCs exposed to high glucose, whereas the basal levels of inositol triphosphate were not different between the two groups. Furthermore, the treatment of A10 VSMCs with angiotensin II and ET-1 also significantly increased the levels of Gq/11alpha and PLC-beta proteins that were restored toward control levels by ET(A)/ET(B) and AT1 receptor antagonists. These results suggest that high glucose augments the expression of Gq/11alpha, PLC-beta, and mediated signaling in VSMCs, which may be attributed to AT1, ET(A), and ET(B) receptors.  相似文献   

20.
Glycogen synthase kinase-3 (GSK-3) signaling has been shown to play a role in the regulation of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of antioxidant genes, including heme oxygenase-1 (HO-1). We assessed whether lithium, a GSK-3 inhibitor, attenuates cardiac sympathetic reinnervation after myocardial infarction, a status of high reactive oxygen species (ROS), by attenuating nerve growth factor (NGF) expression and whether Nrf2/HO-1 signaling is involved in the protection. Twenty-four hours after ligation of the left anterior descending artery, male Wistar rats were treated for 4 weeks. The postinfarction period was associated with increased oxidative–nitrosative stress, as measured by myocardial superoxide, nitrotyrosine, and dihydroethidium fluorescent staining. In concert, myocardial norepinephrine levels and immunohistochemical analysis of sympathetic nerve revealed a significant increase in innervation in vehicle-treated rats compared with sham-operated rats. Arrhythmic scores during programmed stimulation in the vehicle-treated rats were significantly higher than those in sham. This was paralleled by a significant upregulation of NGF protein and mRNA in the vehicle-treated rats, which was reduced after administration of LiCl. LiCl stimulated the nuclear translocation of Nrf2 and the transactivation of the Nrf2 target gene HO-1. Inhibition of phosphoinositide 3-kinase by wortmannin reduced the increase in Nrf2 nucleus translocation and HO-1 expression compared with lithium alone. In addition, the lithium-attenuated NGF levels were reversed in the presence of the Nrf2 inhibitor trigonelline, HO-1 inhibitor SnPP, and peroxynitrite generator SIN-1, indicating the role of Nrf2/HO-1/ROS. In conclusion, lithium protects against ventricular arrhythmias by attenuating NGF-induced sympathetic innervation via antioxidant activation of the Nrf2/HO-1 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号