首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pollen tube elongation is a polarized cell growth process that transports the male gametes from the stigma to the ovary for fertilization inside the ovules. Actomyosin-driven intracellular trafficking and active actin remodeling in the apical and subapical regions of pollen tubes are both important aspects of this rapid tip growth process. Actin-depolymerizing factor (ADF) and cofilin are actin binding proteins that enhance the depolymerization of microfilaments at their minus, or slow-growing, ends. A pollen-specific ADF from tobacco, NtADF1, was used to dissect the role of ADF in pollen tube growth. Overexpression of NtADF1 resulted in the reduction of fine, axially oriented actin cables in transformed pollen tubes and in the inhibition of pollen tube growth in a dose-dependent manner. Thus, the proper regulation of actin turnover by NtADF1 is critical for pollen tube growth. When expressed at a moderate level in pollen tubes elongating in in vitro cultures, green fluorescent protein (GFP)-tagged NtADF1 (GFP-NtADF1) associated predominantly with a subapical actin mesh composed of short actin filaments and with long actin cables in the shank. Similar labeling patterns were observed for GFP-NtADF1-expressing pollen tubes elongating within the pistil. A Ser-6-to-Asp conversion abolished the interaction between NtADF1 and F-actin in elongating pollen tubes and reduced its inhibitory effect on pollen tube growth significantly, suggesting that phosphorylation at Ser-6 may be a prominent regulatory mechanism for this pollen ADF. As with some ADF/cofilin, the in vitro actin-depolymerizing activity of recombinant NtADF1 was enhanced by slightly alkaline conditions. Because a pH gradient is known to exist in the apical region of elongating pollen tubes, it seems plausible that the in vivo actin-depolymerizing activity of NtADF1, and thus its contribution to actin dynamics, may be regulated spatially by differential H(+) concentrations in the apical region of elongating pollen tubes.  相似文献   

2.
Apical actin filaments are highly dynamic structures that are crucial for rapid pollen tube growth, but the mechanisms regulating their dynamics and spatial organization remain incompletely understood. We here identify that AtAIP1-1 is important for regulating the turnover and organization of apical actin filaments in pollen tubes. AtAIP1-1 is distributed uniformly in the pollen tube and loss of function of AtAIP1-1 affects the organization of the actin cytoskeleton in the pollen tube. Specifically, actin filaments became disorganized within the apical region of aip1-1 pollen tubes. Consistent with the role of apical actin filaments in spatially restricting vesicles in pollen tubes, the apical region occupied by vesicles becomes enlarged in aip1-1 pollen tubes compared to WT. Using ADF1 as a representative actin-depolymerizing factor, we demonstrate that AtAIP1-1 enhances ADF1-mediated actin depolymerization and filament severing in vitro, although AtAIP1-1 alone does not have an obvious effect on actin assembly and disassembly. The dynamics of apical actin filaments are reduced in aip1-1 pollen tubes compared to WT. Our study suggests that AtAIP1-1 works together with ADF to act as a module in regulating the dynamics of apical actin filaments to facilitate the construction of the unique "apical actin structure" in the pollen tube.  相似文献   

3.
Pollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LlADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation. Compared with its F-actin binding properties, its low activity in depolymerization assays has been used to explain why pollen ADF decorates F-actin in pollen grains. This low activity is incompatible with a role in increasing actin dynamics necessary to promote pollen tube growth. We have identified a plant homolog of actin-interacting protein, AIP1, which enhances the depolymerization of F-actin in the presence of LlADF1 by approximately 60%. Both pollen ADF and pollen AIP1 bind F-actin in pollen grains but are mainly cytoplasmic in pollen tubes. Our results suggest that together these proteins remodel actin filaments as pollen grains enter and exit dormancy.  相似文献   

4.
Imaging the actin cytoskeleton in growing pollen tubes   总被引:7,自引:0,他引:7  
Given the importance of the actin cytoskeleton to pollen tube growth, we have attempted to decipher its structure, organization and dynamic changes in living, growing pollen tubes of Nicotiana tabacum and Lilium formosanum, using three different GFP-labeled actin-binding domains. Because the intricate structure of the actin cytoskeleton in rapidly frozen pollen tubes was recently resolved, we now have a clear standard against which to compare the quality of labeling produced by these GFP-labeled probes. While GFP-talin, GFP-ADF and GFP-fimbrin show various aspects of the actin cytoskeleton structure, each marker produces a characteristic pattern of labeling, and none reveals the entire spectrum of actin. Whereas GFP-ADF, and to a lesser extent GFP-talin, label the fringe of actin in the apex, no similar structure is observed with GFP-fimbrin. Further, GFP-ADF only occasionally labels actin cables in the shank of the pollen tube, whereas GFP-fimbrin labels an abundance of fine filaments in this region, and GFP-talin bundles actin into a central cable in the core of the pollen tube surrounded by a few finer elements. High levels of expression of GFP-talin and GFP-fimbrin frequently cause structural rearrangements of the actin cytoskeleton of pollen tubes, and inhibit tip growth in a dose dependent manner. Most notably, GFP-talin results in thick cortical hoops of actin, transverse to the axis of growth, and GFP-fimbrin causes actin filaments to aggregate. Aberrations are seldom seen in pollen tubes expressing GFP-ADF. Although these markers are valuable tools to study the structure of the actin cytoskeleton of growing pollen tubes, given their ability to cause aberrations and to block pollen tube growth, we urge caution in their use. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Financial Source: National Science Foundation grant Nos. MCB-0077599 and MCB-0516852 to PKH EU Research Training Network TIPNET (project HPRN-CT-2002-00265), Brussels, Belgium, to BV  相似文献   

5.
The actin cytoskeleton plays a crucial role in the growth and polarity of the pollen tube. Due to inconsistencies in the conventional preservation methods, we lack a unified view of the organization of actin microfilaments, especially in the apical domain, where tip growth occurs. In an attempt to improve fixation methods, we have developed a rapid freeze-whole mount procedure, in which growing pollen tubes (primarily lily) are frozen in liquid propane at –180°C, substituted at –80°C in acetone containing glutaraldehyde, rehydrated, quenched with sodium borohydride, and probed with antibodies. Confocal microscopy reveals a distinct organization of actin in the apical domain that consists of a dense cortical fringe or collar of microfilaments starting about 1–5 m behind the extreme apex and extending basally for an additional 5–10 m. In the shank of the pollen tube, basal to the fringe, actin forms abundant longitudinal filaments that are evenly dispersed throughout the cytoplasm. We have also developed an improved ambient-temperature chemical fixation procedure, modified from a protocol based on simultaneous fixation and phalloidin staining. We removed EGTA, elevated the pH to 9, and augmented the fixative with ethylene glycol bis[sulfosuccinimidylsuccinate] (sulfo-EGS). Notably, this protocol preserves the actin cytoskeleton in a pattern similar to that produced by cryofixation. These procedures provide a reproducible way to preserve the actin cytoskeleton; employing them, we find that a cortical fringe in the apex and finely dispersed longitudinal filaments in the shank are consistent features of the actin cytoskeleton.  相似文献   

6.
The actin cytoskeleton plays a crucial role in many aspects of plant cell development. During male gametophyte development, the actin arrays are conspicuously remodeled both during pollen maturation in the anther and after pollen hydration on the receptive stigma and pollen tube elongation. Remodeling of actin arrays results from the highly orchestrated activities of numerous actin binding proteins (ABPs). A key player in actin remodeling is the actin depolymerizing factor (ADF), which increases actin filament treadmilling rates. We prepared fluorescent protein fusions of two Arabidopsis pollen-specific ADFs, ADF7 and ADF10. We monitored the expression and subcellular localization of these proteins during male gametophyte development, pollen germination and pollen tube growth. ADF7 and ADF10 were differentially expressed with the ADF7 signal appearing in the microspore stage and that of ADF10 only during the polarized microspore stage. ADF7 was associated with the microspore nucleus and the vegetative nucleus of the mature grain during less metabolically active stages, but in germinating pollen grains and elongating pollen tubes, it was associated with the subapical actin fringe. On the other hand, ADF10 was associated with filamentous actin in the developing gametophyte, in particular with the arrays surrounding the apertures of the mature pollen grain. In the shank of elongating pollen tubes, ADF10 was associated with thick actin cables. We propose possible specific functions of these two ADFs based on their differences in expression and localization.  相似文献   

7.
Using both the proton selective vibrating electrode to probe the extracellular currents and ratiometric wide-field fluorescence microscopy with the indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran to image the intracellular pH, we have examined the distribution and activity of protons (H+) associated with pollen tube growth. The intracellular images reveal that lily pollen tubes possess a constitutive alkaline band at the base of the clear zone and an acidic domain at the extreme apex. The extracellular observations, in close agreement, show a proton influx at the extreme apex of the pollen tube and an efflux in the region that corresponds to the position of the alkaline band. The ability to detect the intracellular pH gradient is strongly dependent on the concentration of exogenous buffers in the cytoplasm. Thus, even the indicator dye, if introduced at levels estimated to be of 1.0 μM or greater, will dissipate the gradient, possibly through shuttle buffering. The apical acidic domain correlates closely with the process of growth, and thus may play a direct role, possibly in facilitating vesicle movement and exocytosis. The alkaline band correlates with the position of the reverse fountain streaming at the base of the clear zone, and may participate in the regulation of actin filament formation through the modulation of pH-sensitive actin binding proteins. These studies not only demonstrate that proton gradients exist, but that they may be intimately associated with polarized pollen tube growth.  相似文献   

8.
The dynamics of cellular organelles reveals important information about their functioning. The spatio-temporal movement patterns of vesicles in growing pollen tubes are controlled by the actin cytoskeleton. Vesicle flow is crucial for morphogenesis in these cells as it ensures targeted delivery of cell wall polysaccharides. Remarkably, the target region does not contain much filamentous actin. We model the vesicular trafficking in this area using as boundary conditions the expanding cell wall and the actin array forming the apical actin fringe. The shape of the fringe was obtained by imposing a steady state and constant polymerization rate of the actin filaments. Letting vesicle flux into and out of the apical region be determined by the orientation of the actin microfilaments and by exocytosis was sufficient to generate a flux that corresponds in magnitude and orientation to that observed experimentally. This model explains how the cytoplasmic streaming pattern in the apical region of the pollen tube can be generated without the presence of actin microfilaments.  相似文献   

9.
Cheung AY  Wu HM 《The Plant cell》2004,16(1):257-269
Formins, actin-nucleating proteins that stimulate the de novo polymerization of actin filaments, are important for diverse cellular and developmental processes, especially those dependent on polarity establishment. A subset of plant formins, referred to as group I, is distinct from formins from other species in having evolved a unique N-terminal structure with a signal peptide, a Pro-rich, potentially glycosylated extracellular domain, and a transmembrane domain. We show here that overexpression of the Arabidopsis formin AFH1 in pollen tubes induces the formation of arrays of actin cables that project into the cytoplasm from the cell membrane and that its N-terminal structure targets AFH1 to the cell membrane. Pollen tube elongation is a polar cell growth process dependent on an active and tightly regulated actin cytoskeleton. Slight increases in AFH1 stimulate growth, but its overexpression induces tube broadening, growth depolarization, and growth arrest in transformed pollen tubes. These results suggest that AFH1-regulated actin polymerization is important for the polar pollen cell growth process. Moreover, severe membrane deformation was observed in the apical region of tip-expanded, AFH1-overexpressing pollen tubes in which an abundance of AFH1-induced membrane-associated actin cables was evident. These observations suggest that regulated AFH1 activity at the cell surface is important for maintaining tip-focused cell membrane expansion for the polar extension of pollen tubes. The cell surface-located group-I formins may play the integrin-analogous role as mediators of external stimuli to the actin cytoskeleton, and AFH1 could be important for mediating extracellular signals from female tissues to elicit the proper pollen tube growth response during pollination.  相似文献   

10.
Prevention of actin polymerization with low concentrations of latrunculin B (Lat-B; 2 nm) exerts a profound inhibitory effect on pollen tube growth. Using flow-through chambers, we show that growth retardation starts after 10 min treatment with 2 nm Lat-B, and by 15 to 20 min reaches a basal rate of 0.1 to 0.2 microm/s, during which the pollen tube exhibits relatively few oscillations. If treated for 30 min, complete stoppage of growth can occur. Studies on the intracellular Ca(2+) concentration indicate that the tip-focused gradient declines in parallel with the inhibition of growth. Tubes exhibiting nonoscillating growth display a similarly reduced and nonoscillating Ca(2+) gradient. Studies on the pH gradient indicate that Lat-B eliminates the acidic domain at the extreme apex, and causes the alkaline band to move more closely to the tip. Removing Lat-B and returning the cells to control medium reverses these effects. Phalloidin staining of F-actin reveals that 2 nm Lat-B degrades the cortical fringe; it also disorganizes the microfilaments in the shank causing the longitudinally oriented elements to be disposed in swirls. Cytoplasmic streaming continues under these conditions, however the clear zone is obliterated with all organelles moving into and through the extreme apex of the tube. We suggest that actin polymerization promotes pollen tube growth through extension of the cortical actin fringe, which serves as a track to target cell wall vesicles to preferred exocytotic sites on the plasma membrane.  相似文献   

11.
Actin polymerization is important in the control of pollen tube growth. Thus, treatment of pollen tubes with low concentrations of latrunculin B (Lat-B), which inhibits actin polymerization, permits streaming but reversibly blocks oscillatory growth. In the current study, we employ Jasplakinolide (Jas), a sponge cyclodepsipeptide that stabilizes actin microfilaments and promotes polymerization. Uniquely, Jas (2 microM) blocks streaming in the shank of the tube, but induces the formation of a toroidal-shaped domain in the swollen apex, of which longitudinal optical sections exhibit circles of motion. The polarity of this rotary motion is identical to that of reverse fountain motility in control pollen tubes, with the forward direction occurring at the edge of the cell and the rearward direction in the cell interior. Support for the idea that actin polymerization in the apical domain contributes to the formation of this rotary motility activity derives from the appearance therein of aggregates and flared cables of F-actin, using immunofluorescence, and by the reduction in G-actin as indicated with fluorescent DNAse. In addition, Jas reduces the tip-focused Ca2+ gradient. However, the alkaline band appears in the swollen apex and is spatially localized with the reverse fountain streaming activity. Taken together, our results support the idea that actin polymerization promotes reversal of streaming in the apex of the lily pollen tube.  相似文献   

12.
We have examined the arrangement and movement of three major compartments, the endoplasmic reticulum (ER), mitochondria, and the vacuole during oscillatory, polarized growth in lily pollen tubes. These movements are dependent on the actin cytoskeleton, because they are strongly perturbed by the anti-microfilament drug, latrunculin-B, and unaffected by the anti-microtubule agent, oryzalin. The ER, which has been labeled with mGFP5-HDEL or cytochalasin D tetramethylrhodamine, displays an oscillatory motion in the pollen tube apex. First it moves apically in the cortical region, presumably along the cortical actin fringe, and then periodically folds inward creating a platform that transects the apical domain in a plate-like structure. Finally, the ER reverses its direction and moves basipetally through the central core of the pollen tube. When subjected to cross-correlation analysis, the formation of the platform precedes maximal growth rates by an average of 3 s (35-40 degrees ). Mitochondria, labeled with Mitotracker Green, are enriched in the subapical region, and their movement closely resembles that of the ER. The vacuole, labeled with carboxy-dichlorofluorescein diacetate, consists of thin tubules arranged longitudinally in a reticulate network, which undergoes active motion. In contrast to the mitochondria and ER, the vacuole is located back from the apex, and never extends into the apical clear zone. We have not been able to decipher an oscillatory pattern in vacuole motion. Because this motion is dependent on actin and not tubulin, we think this is due to a different myosin from that which drives the ER and mitochondria.  相似文献   

13.
An actin fringe structure in the subapex plays an important role in pollen tube tip growth. However, the precise mechanism by which the actin fringe is generated and maintained remains largely unknown. Here, we cloned a 2606-bp full-length cDNA encoding a deduced 77-kD fimbrin-like protein from lily (Lilium longiflorum), named FIMBRIN1 (FIM1). Ll-FIM1 was preferentially expressed in pollen and concentrated at actin fringe in the subapical region, as well as in longitudinal actin-filament bundles in the shank of pollen tubes. Microinjection of Ll-FIM1 antibody into lily pollen tubes inhibited tip growth and disrupted the actin fringe. Furthermore, we verified the function of Ll-FIM1 in the fim5 mutant of its closest relative, Arabidopsis thaliana. Pollen tubes of fim5 mutants grew with a larger diameter in early stages but could recover into normal forms in later stages, despite significantly slower growth rates. The actin fringe of the fim5 mutants, however, was impaired during both early and late stages. Impressively, stable expression of fim5pro:GFP:Ll-FIM1 rescued the actin fringe and the growth rate of Arabidopsis fim5 pollen tubes. In vitro biochemical analysis showed that Ll-FIM1 could bundle actin filaments. Thus, our study has identified a fimbrin that may stabilize the actin fringe by cross-linking actin filaments into bundles, which is important for proper tip growth of lily pollen tubes.  相似文献   

14.
An important player in actin remodeling is the actin depolymerizing factor (ADF) which increases actin filament treadmilling rates. Previously, we had prepared fluorescent protein fusions of two Arabidopsis pollen specific ADFs, ADF7 and ADF10. These had enabled us to determine the temporal expression patterns and subcellular localization of these proteins during male gametophyte development. Here we generated stable transformants containing both chimeric genes allowing for simultaneous imaging and direct comparison. One of the striking differences between the two proteins was the localization profile in the growing pollen tube apex. Whereas ADF10 was associated with the filamentous actin array forming the subapical actin fringe, ADF7 was present in the same cytoplasmic region, but in diffuse form. This suggests that ADF7 is involved in the high actin turnover that is likely to occur in the fringe by continuously and efficiently depolymerizing filamentous actin and supplying monomeric actin to the advancing end of the fringe. The possibility to visualize both of these pollen-specific ADFs simultaneously opens avenues for future research into the regulatory function of actin binding proteins in pollen.  相似文献   

15.
The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics.  相似文献   

16.
We have examined the interaction of recombinant lily pollen ADF, LlADF1, with actin and found that whilst it bound both G- and F-actin, it had a much smaller effect on the polymerization and depolymerization rate constants than the maize vegetative ADF, ZmADF3. An antiserum specific to pollen ADF, antipADF, was raised and used to localize pollen ADF in daffodil--a plant in which massive reorganizations of the actin cytoskeleton have been seen to occur as pollen enters and exits dormancy. We show, for the first time, an ADF decorating F-actin in cells that did not result from artificial increase in ADF concentration. In dehydrated pollen this ADF : actin array is replaced by actin : ADF rodlets and aggregates of actin, which presumably act as a storage form of actin during dormancy. In germinated pollen ADF has no specific localization, except when an adhesion is made at the tip where actin and ADF now co-localize. These activities of pollen ADF are discussed with reference to the activities of ZmADF3 and other members of the ADF/cofilin group of proteins.  相似文献   

17.
Foissner I  Grolig F  Obermeyer G 《Protoplasma》2002,220(1-2):0001-0015
We investigated the cytoskeleton of Lilium longiflorum pollen tubes and examined the effects of the type 2A protein phosphatase (PP2A) inhibitors calyculin A and okadaic acid. An improved method for actin visualization, the simultaneous fixation and staining with rhodamine-labelled phalloidin during microscopical observation, revealed abundant actin filaments of no preferential orientation in the apical clear zone. Microtubules, visualized by indirect immunofluorescence, were mostly absent from the apices of straight-growing pollen tubes but present in those with irregular shape. Double labelling showed that both actin bundles and microtubules had a similar longitudinal or slightly helical orientation in the pollen tube shaft. In the presence of 30 nM calyculin A or okadaic acid, pollen tubes grew very slowly, branched frequently, and contained isolated, randomly oriented, curved actin bundles and microtubules. Treating pollen tubes with calyculin A or okadaic acid after germination arrested growth immediately, reversibly altered the alignment of actin bundles from axial to transverse, and disassembled microtubules. The changes in actin organization caused by the PP2A inhibitors were similar to those observed upon overexpression of AtRop1 (Y. Fu, G. Wu, Z. Yang, Journal of Cell Biology 152: 1019-1032, 2001), suggesting that hyperphosphorylation interferes with the signalling pathway of small GTPases. The effects of the PP2A inhibitors could be ameliorated with nanomolar concentrations of latrunculin B.  相似文献   

18.
Summary Controversy over whether the apical region of a growing pollen tube contains a dense array of actin microfilaments (MFs) was the impetus for the present study. Microinjection of small amounts of fluorescently labeled phalloidin allowed the observation of MF bundles inLilium longiflorum pollen tubes that were growing and functioning normally. The results show that while the pollen tube contains numerous MF bundles arranged axially, the apical region is essentially devoid of them. The MF bundles could be seen shifting and changing in distribution as the cells grew, but they always remained out of the apical regions. Perturbation of normal growth and function by caffeine causes a change in the MF distribution, which returns to normal upon removal of caffeine from the growth medium. The lack of MFs in the apex is confirmed by careful immunogold electron microscopic analysis of thin sections of rapidly frozen and freeze-substituted pollen tubes, in which very fine MF bundles could be seen somewhat closer to the tip than is discernible with fluorescence microscopy. Still, these are very few in number and are basically absent from the very tip. Thus a reassessment of current assumptions about the distribution of actin in the pollen tube apical region is required.Abbreviations MF microfilaments - FITC fluorescein isothiocyanate - RF-FS rapidly frozen and freeze-substituted - EM electron microscopy Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

19.
Chen CY  Cheung AY  Wu HM 《The Plant cell》2003,15(1):237-249
Pollen tube elongation is a rapid tip growth process that is driven by a dynamic actin cytoskeleton. A ubiquitous family of actin binding proteins, actin-depolymerizing factors (ADFs)/cofilins, bind to actin filaments, induce severing, enhance depolymerization from their slow-growing end, and are important for maintaining actin dynamics in vivo. ADFs/cofilins are regulated by multiple mechanisms, among which Rho small GTPase-activated phosphorylation at a terminal region Ser residue plays an important role in regulating their actin binding and depolymerizing activity, affecting actin reorganization. We have shown previously that a tobacco pollen-specific ADF, NtADF1, is important for maintaining normal pollen tube actin cytoskeleton organization and growth. Here, we show that tobacco pollen grains accumulate phosphorylated and nonphosphorylated forms of ADFs, suggesting that phosphorylation could be a regulatory mechanism for their activity. In plants, Rho-related Rac/Rop GTPases have been shown to be important regulators for pollen tube growth. Overexpression of Rac/Rop GTPases converts polar growth into isotropic growth, resulting in pollen tubes with ballooned tips and a disrupted actin cytoskeleton. Using the Rac/Rop GTPase-induced defective pollen tube phenotype as a functional assay, we show that overexpression of NtADF1 suppresses the ability of NtRac1, a tobacco Rac/Rop GTPase, to convert pollen tube tip growth to isotropic growth. This finding suggests that NtADF1 acts in a common pathway with NtRac1 to regulate pollen tube growth. A mutant form of NtADF1 with a nonphosphorylatable Ala substitution at its Ser-6 position [NtADF1(S6A)] shows increased activity, whereas the mutant NtADF1(S6D), which has a phospho-mimicking Asp substitution at the same position, shows reduced ability to counteract the effect of NtRac1. These observations suggest that phosphorylation at Ser-6 of NtADF1 could be important for its integration into the NtRac1 signaling pathway. Moreover, overexpression of NtRac1 diminishes the actin binding activity of green fluorescent protein (GFP)-NtADF1 but has little effect on the association of GFP-NtADF1(S6A) with actin cables in pollen tubes. Together, these observations suggest that NtRac1-activated activity regulates the actin binding and depolymerizing activity of NtADF1, probably via phosphorylation at Ser-6. This notion is further supported by the observation that overexpressing a constitutively active NtRac1 in transformed pollen grains significantly increases the ratio of phosphorylated to nonphosphorylated ADFs. Together, the observations reported here strongly support the idea that NtRac1 modulates NtADF1 activity through phosphorylation at Ser-6 to regulate actin dynamics.  相似文献   

20.
Low concentration of LatB inhibits not only the actin polymerization, but also induces profound alteration of MT distribution in pollen tubes of Nicotiana tabacum. The short randomly oriented MTs in the apical and subapical regions, became organized as bundles forming subapical rings or basket-like structures, surrounding the apex. Moreover, the depolymerization of AFs in the cortical regions of the apex and subapical region affects the timing of entrance of the vegetative nucleus and generative cell into the pollen tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号