首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A synthetic peptide of the N-terminus of actin interacts with myosin   总被引:3,自引:0,他引:3  
J E Van Eyk  R S Hodges 《Biochemistry》1991,30(50):11676-11682
Research reported from numerous laboratories suggested that the N-terminal region of actin contained one of the binding sites between actin and myosin. A synthetic peptide corresponding to residues 1-28 of skeletal actin was prepared by solid-phase peptide methodology. The formation of a complex between this peptide and myosin subfragment 1 (S1) was demonstrated by high-performance size-exclusion chromatography (pH 6.8). The actin peptide precipitated S1 at higher pH (7.4-8.2) but remained soluble when bound to heavy meromyosin (HMM) or S1 in the presence of F-actin. The actin peptide 1-28 bound to S1 and HMM and activated the ATPase activity in a manner similar to that of F-actin. These results demonstrate that the N-terminal region of actin, residues 1-28, contains a biologically important binding site for myosin.  相似文献   

2.
1. A peptide which enhances ureogenesis in primary cultured hepatocytes of rats was isolated from a tryptic digest of bovine beta-casein. 2. The structure of the peptide was Ala-Val-Pro-Tyr-Pro-Gln-Arg which is located from 177th to 183rd residues from N-terminal of beta-casein. 3. The peptide also showed the activity to inhibit protein synthesis and protein degradation. 4. It also inhibited DNA synthesis of hepatocytes induced by insulin and/or epidermal growth factor.  相似文献   

3.
The sequence of the alpha-chain of the acetylcholine receptor of T. californica has been determined by recent cloning studies. The integrity of the disulphide bond between Cys-128 and cys-142 has been shown to be important for the maintenance of the binding activity of the receptor, thus implicating the regions around the disulphide bridge in binding with acetylcholine. In the present work, a synthetic peptide containing this loop region (residues 125-147) was synthesized. Solid-phase radiometric binding assays demonstrated a high binding of 125I-labelled alpha-bungarotoxin to the synthetic peptide. It was further shown that the free peptide bound well to [3H]acetylcholine. Additional experiments demonstrated that pretreatment of peptide 125-147 with 2-mercaptoethanol destroyed its binding activity, clearly showing that the integrity of the disulphide structure was essential for binding. Unlabelled acetylcholine also inhibited the binding of labelled acetylcholine to the synthetic peptide. The region 125-147, therefore, contains essential elements of the acetylcholine binding site of the Torpedo receptor.  相似文献   

4.
A synthetic peptide modeled on residues 45 to 60 of the 1A protein of respiratory syncytial (RS) virus [1A(45-60)] was constructed and used for immunization of mice and rabbits. The immunoglobulin G fraction of the resulting rabbit antibody, purified on protein A-Sepharose, immunoprecipitated from RS-infected HEp-2 cells a protein with a molecular size of approximately 9.5 kilodaltons, which corresponds to the previously published molecular size of the 1A protein (Y. T. Huang, P. L. Collins, and G. W. Wertz, Virus Res. 2:157-173, 1985). To investigate the T-cell-inducing properties of 1A(45-60), six strains of mice were immunized and their popliteal lymph node cells were tested for proliferation upon restimulation with peptide in vitro. The lymph node cells of all six strains of mice were responsive to restimulation with 1A(45-60) and showed high- and low-responder strain variation. These peptide-primed lymph node cells also proliferated upon in vitro restimulation with RS virus-infected cells. Correlation of proliferation with interleukin 2 production suggested that the responding lymphocytes were T-helper cells. The antibody-binding and T-cell-stimulating sites of 1A were mapped by constructing a series of overlapping synthetic peptides and testing each for ability to react with antiserum prepared by immunization of BALB/C mice with free peptide 1A(45-60) or for ability to restimulate proliferation in 1A(45-60)-primed lymph node cells of BALB/C mice. Human antibody, obtained during confirmed RS virus infection, was similarly tested with the truncated peptides. Antibody-binding activity was reduced after truncation from the carboxy terminus, and a binding site was mapped to residues 51 through 60, the smallest peptide tested. T-cell-stimulating activity in mice was relatively resistant to truncation from the carboxy terminus and sensitive to truncation from the amino terminus. The smallest region which retained significant T-cell-stimulating activity mapped to residues 46 through 56. However, addition of the naturally occurring Cys at residue 45 and extension of the C terminus to residue 62 resulted in maximum T-cell-stimulating activity of the peptide. These data define both a T-cell epitope and a B-cell epitope of the 1A protein of RS virus and suggest that the carboxy terminus of 1A contains a B-cell epitope, involving residues 51 through 60, which is recognized during natural human infection.  相似文献   

5.
Studies on the glutamine substrate specificities of human plasma factor XIIIa and guinea pig liver transglutaminase have been made using variants of the synthetic peptide substrate, Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser-Lys-Val-Leu-Pro-Val-Pro-Glu. The sequence of this effective peptide substrate corresponds to the primary site of factor XIIIa-catalyzed amine incorporation into beta-casein, the most sensitive known macromolecular substrate for this enzyme (Gorman, J.J., and Folk, J.E. (1980) J. Biol. Chem. 255, 419-427). Variations in specificity observed with factor XIIIa for peptides containing single substitutions and multiple substitutions in this sequence are indications that several important determinants for enzyme recognition are contained therein. Among these are several of the hydrophobic amino acid residues and the lysine residue. Less pronounced changes in specificity occur with the liver enzyme and the differences in effects of the various substitutions reveal important differences in specificity requirements of factor XIIIa and the liver enzyme. Comparisons of the activities of the enzymes toward the synthetic peptides to their activities toward macromolecular substrates suggest that higher order macromolecular structural features contribute to specificity.  相似文献   

6.
Effects of bovine beta-casein (1-28) having a phosphoserine-rich region (Glu14-SerP-Leu-SerP-SerP-SerP-Glu-Glu21) and its chemically synthesized partial fragments on proliferation of lymphocytes and immunoglobulin production were investigated in mouse spleen cell cultures. The parent fragment 1-28 and all fragments containing SerP-Leu-SerP and/or SerP-SerP-SerP had a significant mitogenic effect, stimulated proliferation of lymphocytes induced by lipopolysaccharide, phytohemagglutinin, or concanavalin A, and increased immunoglobulin (IgG + IgM + IgA) or IgA levels in the cell cultures. In contrast, dephosphorylated beta-casein (14-21) and SerP-SerP amide had hardly any immunoregulatory activity. On the other hand, SerP-Leu-SerP amide reacted little with antibodies specific to bovine beta-casein (1-28), but beta-casein (14-21), and SerP-SerP-SerP amide obviously reacted with the antibody. These results confirm that the immunoregulatory activity of casein phosphopeptides is attributable to SerP-X-SerP, which may well be available as a non-allergic food ingredient having an adjuvant activity for mucosal IgA responses.  相似文献   

7.
Zhou H  Xu S  Ye M  Feng S  Pan C  Jiang X  Li X  Han G  Fu Y  Zou H 《Journal of proteome research》2006,5(9):2431-2437
Phosphorylation is one of the most important post-translational modifications of proteins, which modulates a wide range of biological functions and activity of proteins. The analysis of phosphopeptides is still one of the most challenging tasks in proteomics research by mass spectrometry. In this study, a novel phosphopeptide enrichment approach based on the strong interaction of zirconium phosphonate (ZrP) modified surface with phosphopeptides has been developed. ZrP modified porous silicon (ZrP-pSi) wafer was prepared to specifically capture the phosphopeptides from complex peptide mixtures, and then the captured phosphopeptides were analyzed by MALDI-TOF MS by directly placing the wafer on a MALDI target. The phosphopeptide enrichment and MALDI analysis were both performed on the ZrP-pSi wafer which significantly reduced the sample loss and simplified the analytical procedures. The prepared ZrP-pSi wafer has been successfully applied for the enrichment of phosphopeptides from the tryptic digest of standard phosphoproteins beta-casein and alpha-casein. The excellent selectivity of this approach was demonstrated by analyzing phosphopeptides in the digest mixture of beta-casein and bovine serum albumin with molar ratio of 1:100. High detection sensitivity has been achieved for the analysis of the phosphopeptides from tryptic digestion of 2 fmol beta-casein on the ZrP-pSi surface.  相似文献   

8.
The human platelet thrombin receptor is activated when thrombin cleaves its receptor's amino-terminal extension to reveal a new amino terminus that functions as a tethered peptide ligand. Exactly how this "agonist peptide domain" remains cryptic within the uncleaved receptor and becomes functional after receptor cleavage is unknown. In this report we define the structural features of the thrombin receptor's agonist peptide domain important for receptor activation. Studies with mutant thrombin receptors have suggested that agonist peptide domain residues 2-6 contained determinants critical for receptor activation, and the synthetic peptide SFLLR-NH2 representing the 1st 5 amino-terminal residues of the agonist peptide domain was sufficient to specify agonist activity. Acetylating or removing the agonist peptide's amino-terminal ammonium group greatly attenuated agonist activity. Agonist peptide residue Phe2 was vital for agonist function; residues Leu4 and Arg5 individually played less important roles. These structure-function relationships held for both platelet activation and activation of the cloned receptor expressed in transfected mammalian cells. Our studies suggest that structures at the extreme amino terminus of the thrombin receptor's agonist peptide domain, in particular the free ammonium group of Ser1 and the phenyl ring of Phe2, are critical for receptor activation and that the agonist function of this domain is expressed when receptor proteolysis unmasks such determinants. In addition to revealing details of the thrombin receptor's proteolytic triggering mechanism, these studies open avenues to the development of drugs targeting the thrombin receptor and to further definition for the role of the thrombin receptor in cellular regulation.  相似文献   

9.
The caseins are major components of milk for most mammals and are secreted as large colloidal aggregates termed micelles. They have less ordered secondary and tertiary structures in comparison with typical globular proteins. In this work, beta-casein, a member of the casein family, has been demonstrated to exhibit chaperone-like activity, being able to suppress the thermal and chemical aggregation of such substrate proteins as insulin, lysozyme, alcohol dehydrogenase, and catalase by forming stable complexes with the denaturing substrate proteins. Meanwhile, beta-casein was found to not only prevent aggregation of the substrate proteins, but also solubilize the protein aggregates already formed. Data also show that beta-casein exhibits a higher chaperone-like activity than alpha-casein, likely due to the difference in the number of proline residues present and/or in the extent of exposed hydrophobic surfaces. The implications for their in vivo functions of the caseins, based on their exhibiting such in vitro chaperone-like activities, are discussed.  相似文献   

10.
In addition to NS3 protease, the NS4A protein is required for efficient cleavage of the nonstructural protein region of the hepatitis C virus polyprotein. To investigate the function and the sequence of NS4A required for the enhancement of NS3 protease activity, we developed an in vitro NS3 protease assay system consisting of three purified viral elements: (i) a recombinant NS3 protease which was expressed in Escherichia coli as a maltose-binding protein-NS3 fusion protein (MBP-NS3), (ii) synthetic NS4A fragments, and (iii) a synthetic peptide substrate which mimics the NS5A/5B junction. We showed that the NS3 protease activity of MBP-NS3 was enhanced in a dose-dependent manner by 4A18-40, which is a peptide composed of amino acid residues 18 to 40 of NS4A. The optimal activity was observed at a 10-fold molar excess of 4A18-40 over MBP-NS3. The coefficient for proteolytic efficiency, kcat/Km, of NS3 protease was increased by about 40 times by the addition of a 10-fold molar excess of 4A18-40. Using a series of truncations of 4A18-40, we estimated that amino acid residues 22 to 31 in NS4A (SVVIVGRIIL) constituted the core sequence for the effector activity. Single-substitution experiments with 4A21-34, a peptide composed of amino acid residues 21 to 34 of NS4A, suggested the importance of several residues (Val-23, Ile-25, Gly-27, Arg-28, Ile-29, and Leu-31) for its activity. In addition, we found that some single-amino-acid substitutions in 4A21-34 were able to inhibit the enhancement of NS3 protease activity by 4A18-40. This approach has potential as a novel strategy for inhibiting the NS3 protease activity important for hepatitis C virus proliferation.  相似文献   

11.
Evidence that a 27-residue sequence is the actin-binding site of ABP-120   总被引:12,自引:0,他引:12  
Proteolysis experiments of ABP-120 from Dictyostelium discoideum have previously demonstrated that removal of residues 89-115 from a tryptic peptide which retains actin binding activity, abolishes actin binding (Bresnick, A. R., Warren, V., and Condeelis, J. (1990) J. Biol. Chem. 265, 9236-9240). Antibodies made against a synthetic peptide of this 27-amino acid sequence (27-mer) specifically immunoprecipitate native ABP-120 from Dictyostelium high speed supernatants, demonstrating that the 27-mer sequence is on the surface of the molecule as expected for an active site. ABP-120 is inhibited in its binding to F-actin by Fab' fragments of the anti-27-mer IgG. Half-maximal inhibition occurs at an approximate molar ratio of 7 Fab' fragments/ABP-120 monomer. Viscoelastic measurements indicate that ABP-120 forms fewer cross-links with F-actin in the presence of the 27-mer synthetic peptide than in its absence. In F-actin cosedimentation assays, the binding of ABP-120 to actin is inhibited by the 27-mer synthetic peptide. Furthermore, the 27-mer synthetic peptide cosediments with F-actin, whereas a control hydrophobic peptide and a synthetic peptide of residues 69-88 of ABP-120 do not cosediment with F-actin. These observations suggest a direct involvement of the 27-mer sequence in the actin binding activity of ABP-120.  相似文献   

12.
This work evaluated the angiotensin-converting-enzyme (ACE)-inhibitory activities of a bovine sodium caseinate fermentate generated using the proteolytic capabilities of the porcine small intestinal isolate Lactobacillus animalis DPC6134 (NCIMB deposit 41355). The crude 10-kDa L. animalis DPC6134 fermentate exhibited ACE-inhibitory activity of 85.51% (+/-15%) and had a 50% inhibitory concentration (IC50) of 0.8 mg protein/ml compared to captopril, which had an IC50 value of 0.005 mg/ml. Fractionation of the crude L. animalis DPC6134 fermentate by membrane filtration and reversed-phase high-performance liquid chromatography (HPLC) generated three bioactive fractions from a total of 72 fractions. Fractions 10, 19, and 43 displayed ACE-inhibitory activity percentages of 67.53 (+/-15), 83.71 (+/-19), and 42.36 (+/-11), respectively, where ACE inhibition was determined with 80 microl of the fractions with protein concentrations of 0.5 mg/ml. HPLC and mass spectrometry analysis identified 25 distinct peptide sequences derived from alpha-, beta-, and kappa-caseins. In silico predictions, based on the C-terminal tetrapeptide sequences, suggested that peptide NIPPLTQTPVVVPPFIQ, corresponding to beta-casein f(73-89); peptide IGSENSEKTTMP, corresponding to alpha(s1)-casein f(201212); peptide SQSKVLPVPQ, corresponding to beta-casein f(166-175); peptide MPFPKYPVEP, corresponding to beta-casein f(124133); and peptide EPVLGPVRGPFP, corresponding to beta-casein f(210-221), contained ACE-inhibitory activities. These peptides were chosen for chemical synthesis to confirm the ACE-inhibitory activity of the fractions. Chemically synthesized peptides displayed IC50 values in the range of 92 microM to 790 microM. Additionally, a simulated gastrointestinal digestion confirmed that the ACE-inhibitory 10-kDa L. animalis DPC6134 fermentation was resistant to a cocktail of digestive enzymes found in the gastrointestinal tract.  相似文献   

13.
Modelling studies with beta-endorphin have clearly demonstrated that an amphiphilic secondary structural segment is a salient feature of the biologically active conformation of this 31-residue opioid peptide hormone. Here, we have initiated the synthesis of peptide models using unnatural building blocks by designing a beta-endorphin analogue (peptide 6) in which the hydrophilic linker region between the NH2-terminal enkephalin (residues 1-5) and the COOH-terminal helix (residues 10-28, sequence identical to that of peptide 3 in region 13-31, Fig. 1) consists of four units of gamma-amino-gamma-hydroxymethylbutyric acid connected by isopeptidic linkages. Peptide 6 has physical properties similar to that of peptide 3, as shown by surface monolayer and circular dichroism studies. The binding affinities of the two peptides to delta- and mu-receptors are also similar. In rat vas deferens assays, the present model is equipotent to peptide 3. The most striking result of all is the potent analgesic activity displayed by peptide 6 when injected intracerebroventricularly into mice. The potencies of peptides 6 and 3 are comparable in these assays. These studies clearly illustrate that one can use unusual building blocks to construct structural regions of synthetic analogues and still preserve the biological activity of peptide hormones.  相似文献   

14.
The serine protease thrombin stimulates proliferation in osteoblasts, but decreases alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation. Three thrombin receptors have been identified, protease activated receptor (PAR)-1, PAR-3 and PAR-4; we have previously demonstrated that mouse osteoblasts express PAR-1 and PAR-4. The effect of thrombin on osteoblast proliferation and differentiation was studied to determine which of the thrombin receptors is responsible for the primary effects of thrombin. Primary mouse calvarial osteoblasts from PAR-1-null and wild-type mice, and synthetic peptides that specifically activate PAR-1 (TFFLR-NH2) and PAR-4 (AYPGKF-NH2) were used. Both the PAR-1-activating peptide and thrombin stimulated incorporation of 5-bromo-2'-deoxyuridine (two to four-fold, P < 0.001) and reduced alkaline phosphatase activity (approximately three-fold, P < 0.05) in cells from wild-type mice. The PAR-4-activating peptide, however, had no effect on either alkaline phosphatase activity or proliferation in these cells. Neither thrombin nor PAR-4-activating peptide was able to affect osteoblast proliferation or alkaline phosphatase activity in cells isolated from PAR-1-null mice. The results demonstrate that thrombin stimulates proliferation and inhibits differentiation of osteoblasts through activation of PAR-1. No other thrombin receptor appears to be involved in these effects.  相似文献   

15.
C-terminal labelling of beta-casein   总被引:1,自引:0,他引:1  
This paper is the first to report specific labelling of a native protein at its C-terminal end by carboxypeptidase Y-catalyzed transpeptidation between beta-casein and tritiated Phe amide. A tryptic digest of the radiolabelled protein was resolved by reversed-phase HPLC and a single labelled peptide was isolated therefrom. Sequence determination and FAB mass spectrometry showed that the last 2 residues (Val-209, Ile-208) of beta-casein had been deleted and Ile 207 substituted by Phe, deamidation presumably occurring after transpeptidation. Identical results were obtained by transpeptidating the isolated C-terminal tryptic heptapeptide (203-209) of native beta-casein.  相似文献   

16.
Chang SL  Wallar BJ  Lipscomb JD  Mayo KH 《Biochemistry》2001,40(32):9539-9551
Methane monooxygenase (MMO) is a non-heme-iron-containing enzyme which consists of 3 protein components: a hydroxylase (MMOH), an NAD(P)H-linked reductase (MMOR), and a 138-residue regulatory protein, component B (MMOB). Here, NMR spectroscopy has been used to derive interactions between MMOB and reduced and oxidized states of MMOH (245 kDa). Differential broadening of MMOB resonances in 1H-15N HSQC spectra acquired at different molar ratios of MMOH indicates interaction of both proteins, with MMOB binding more tightly to oxidized MMOH as observed previously. The most broadened backbone NH resonances suggest which residues in MMOB are part of the MMOH-binding interface, particularly when those residues are spatially close or clustered in the structure of MMOB. Although a number of different residues in MMOB appear to be involved in interacting with oxidized- and reduced-MMOH, some are identical. The two most common segments, proximal in the structure of MMOB, are beta-strand 1 with turn 1 (residues 36-46) and alpha-helix 3 going into loop 2 (residues 101-112). In addition, the N-terminus of MMOB is observed to be involved in binding to MMOH in either redox state. This is most strongly evidenced by use of a synthetic N-terminal peptide from MMOB (residues 1-29) in differential broadening 1H TOCSY studies with MMOH. Binding specificity is demonstrated by displacement of the peptide from MMOH by parent MMOB, indicating that the peptide binds in or near the normal site of N-terminal binding. The N-terminus is also observed to be functionally important. Steady-state kinetic studies show that neither a delta2-29 MMOB deletion mutant (which in fact does bind to MMOH), the N-terminal peptide, nor a combination of the two elicit the effector functions of MMOB. Furthermore, transient kinetic studies indicate that none of the intermediates of the MMOH catalytic cycle are observed if either the delta2-29 MMOB mutant or the N-terminal peptide is used in place of MMOB, suggesting that deletion of the N-terminus prevents reaction of reduced MMOH with O2 that initiates catalysis.  相似文献   

17.
We have demonstrated that a synthetic peptide corresponding to the rat mitochondrial malate dehydrogenase (mMDH) transit peptide (TP-28) inhibits the binding of pre-mMDH to isolated mitochondria. Synthetic peptides derived from chloroplast transit peptide sequences, which have a similar net charge, did not inhibit import. In addition, this peptide (TP-28) inhibits import of ornithine transcarbamylase, another mitochondrial matrix protein, thus suggesting that common import pathways exist for both mMDH and ornithine transcarbamylase. A smaller synthetic peptide corresponding to residues 1-20 of the mMDH transit peptide (TP-20) also inhibits binding. However, several substitutions for leucine-13 in the smaller peptide relieve import inhibition, thus providing evidence that this neutral residue plays a crucial role in transit peptide binding to the mitochondrial surface. Proteolytic processing of pre-mMDH by a mitochondrial matrix fraction to both the mature and intermediate forms of mMDH was also inhibited by TP-28. The ability of synthetic peptides to inhibit distinct steps in the import of mitochondrial precursor proteins corresponds precisely to their ability to interact with the same components used by transit peptides on intact precursors. Furthermore, inhibition at multiple points along the import pathway reflects the functions of several independent structures contained within transit peptides.  相似文献   

18.
A new methodology for the preparation of enzyme-labeled protein polymers bearing pendent haptens was developed through the combination of chemical modification and posttranslational protein modification catalyzed by microbial transglutaminase (MTG). As a model hapten, trinitrobenzene (TNB) was chosen and chemically conjugated with the accessible Lys residues of beta-casein. The resultant trinitrophenylated beta-casein was further modified with formaldehyde to render the residual Lys residues inert toward self-cross-linking by MTG. Escherichia coli alkaline phosphatase (AP), comprising a specific peptide tag carrying a MTG-reactive Lys residue, was then conjugated to the Gln residues in beta-casein-TNB conjugates. The resultant AP-labeled beta-casein-bearing pendent TNB moieties (AP-betaCT) showed comparable specific activity with native AP. It was found that only the AP-betaCT with a sufficient number of pendent TNBs are capable of binding to a surface adsorbed with anti-TNP and anti-TNT antibodies, indicating the presence of polyvalent interactions. The utility of AP-betaCT was demonstrated by competitive immunoassays for trinitrophenol (TNP) and trinitrotoluene (TNT), with detection limits of 0.99 microg/L and 0.18 microg/L, respectively. The present study demonstrates the potential of dual labeling of protein scaffolds by chemical and enzymatic protein manipulation to create a new proteinaceous architecture.  相似文献   

19.
(1) High-resolution 31P-NMR was used to study the environment of the phosphoserine residues of the phosphoproteins, alpha s1-casein B, beta-casein A2 and beta-casein C. For reference purposes 31P-NMR spectra of phosvitin and ovalbumin were also collected. (2) 31P resonances were assigned to specific phosphoserine residues as a result of comparisons of the high-resolution 31P-NMR spectra for alpha s1- and beta-caseins and for peptide fragments of these proteins obtained by cyanogen bromide and trypsin cleavage. (3) Measurements of the enhancement of the relaxation rate for water protons (1H) on addition of Mn2+ to alpha s1-casein B and to a fragment alpha s1-CN3, obtained by cyanogen bromide cleavage, gave approximate pK values for the binding groups and suggest the possibility of a conformational change induced by varying the concentration of divalent cation.  相似文献   

20.
Plasma apolipoprotein E (apoE) is a ligand for the cellular uptake of cholesterol-rich plasma lipoproteins. ApoE also inhibits mitogen-stimulated lymphocyte proliferation and gonadotropin-stimulated ovarian theca/interstitial cell androgen production. To address the mechanism(s) by which apoE is active and to understand its interaction with the target cells, we prepared and examined the inhibitory activity of a series of apoE synthetic peptides. ApoE peptides representing amino acid residues 93-112, 141-155, 161-171, 172-182, and 174-193 were not active in either bioassay. However, specific inhibition of both lymphocyte proliferation and ovarian androgen production was observed with a self-conjugate of peptide-(141-155). Furthermore, a synthesized dimeric peptide representing two repeats of sequence-(141-155) (i.e. (141-155)-(141-155] was active as well. In both bioassays, the inhibition observed was not a result of direct cell killing. Furthermore, these apoE peptides exhibited activities with characteristics that were shared with those of native apoE. The results indicate that amino acid residues 141-155 of apoE are responsible for the biological activity of apoE. Furthermore, the results suggest that dimers or multimers of native apoE may be a biologically important species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号