首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Mouse mammary tumor virus-producing cultures of mouse mammary tumor cells synthesize a viral-related polypeptide of molecular weight of 73,000 (gp 73) which is rapidly labeled during a short pulse but disappears during the chase concomitantly with the appearance of label in the virion glycoproteins gp 49 and gp 37.5/33.5. The addition of the protein synthesis-inhibitor cycloheximide to the chase medium has little effect on this conversion. Treatment of the proposed precursor with α-chymotrypsin leads to the formation of a polypeptide of molecular weight 49,000, similar to the major virion glycoprotein. A comparison of tryptic digest maps of the glycoproteins involved supports the hypothesis that both the viral glycoproteins gp 49 and gp 37.5/33.5 are derived from gp 73.  相似文献   

2.
C Dickson  J P Puma    S Nandi 《Journal of virology》1975,16(2):250-258
Mouse mammary tumor virus polypeptides were detected in the cytoplasm of mouse mammary tumor cell cultures using immunological precipitation techniques. The anti-mouse mammary tumor virus serum precipitated the major virion glycoproteins gp49 and gp37.5/33.5 and a viral-related nonvirion glycoprotein of 76,000 daltons. Subcellular fractionation studies revelaed that the cell-associated virion glycoproteins were present in the membrane fraction. Pulsechase experiments indicated that a viral-related nonvirion glycoprotein of 76,000 daltons may be a precursor to one or more of the virion glycoproteins.  相似文献   

3.
Two inhibitors of glycosylation, 2-deoxyglucose and tunicamycin, depressed the synthesis of infectious Rous sarcoma virus greater than 100-fold. Under the same conditions only a two- to threefold decrease in the production of virus particles was observed. The noninfectious particles had a lower density (1.145 g/ml) in isopycnic sucrose gradients and lacked the two virion glycoproteins, gp85 and gp37, found on infectious virions. The four internal structural proteins of the virus, p27, p19, p15, and p12, appeared to be assembled normally into the noninfectious virus. Polypeptides related to the Rous sarcoma virus glycoproteins were immunoprecipitated from pulse-labeled Rous sarcoma virus (Prague strain, subgroup B)-transformed cells. pr95gp, the polyprotein precursor to gp85 and gp37, was the major protein precipitated from untreated cells. PR95GP, THE POLYPROTEIN PRECURSOR TO GP85 AND GP37, WAS THE MAJOR PROTEIN PRECIPITATED FROM UNTREATED CELLS. This was absent in both tunicamycin- and 2-deoxyglucose-treatec ells, and a new polypeptide of molecular weight 57,000 to 58,000 was the major species precipitated. In tunicamycin-treated cells this product was unstable and was degraded during a 2-h chase; in 2-deoxyglucose-treated cells, on the other hand, the polypeptide appeared to be more stable and underwent partial glycosylation. The synthesis and processing of pr76, the polyprotein precursor to the internal structural proteins of the virion, occurred normally in both treated and untreated cells. It is concluded that the unglycosylated env gene product is a polypeptide of molecular weight 57,000 to 58,000.  相似文献   

4.
Murine mammary tumor virus protein interactions in the intact virion structure were studied with the use of the cleavable cross-linking reagents dithiobis(succinimidyl propionate) and methyl 4-mercaptobutyrimidate hydrochloride. Cross-linked oligomeric complexes of murine mammary tumor virus proteins were analyzed by two-dimensional gel electrophoresis. Among the complexes most consistently formed were a heterodimer of the two glycoproteins gp36 and gp52, the homodimer of gp36, and the homotrimer of gp52. A very prominent oligomer formed at higher concentrations of dithiobis(succinimidyl propionate) was a complex of about 230,000 molecular weight, made up of three molecules each of gp36 and gp52. A number of lines of evidence, including electron microscopic analysis, suggest that the 230,000-molecular-weight complex actually represents the murine mammary tumor virus spike structure. Of the murine mammary tumor virus core proteins, p14 forms homooligomers most readily. Upon cross-linking with methyl 4-mercaptobutyrimidate hydrochloride a small amount of what seems to be a heterodimer made up of the N-terminal gag protein p10 and the hydrophobic membrane glycoprotein gp36 can be observed.  相似文献   

5.
Three monoclonal antibodies, which recognized two nonoverlapping antigenic domains and were reactive to the bovine viral diarrhea virus (BVDV) p80 protein, were found to cross react with the p125 protein of both cytopathic and noncytopathic BVDVs and a molecular weight 175,000 BVDV protein (p175). Results from limited proteolysis and chemical cleavage experiments confirmed the relatedness of these three proteins. In pulse-chase experiments it was apparent that p175 was a transient protein, as it was diminished during the chase, with a half-life of about 30 min. However, both p125 and p80 were also observed in short-pulsed lysates. Furthermore, during the chase, radiolabel was not found to accumulate into p125 or p80. Rather, these two proteins were stable with half-lives greater than 2 h. A fourth nonglycosylated protein, p37, increased during the chase. Processing of several glycoproteins was evident in these experiments. A glycoprotein of molecular weight 75,000 (gp75) diminished during the chase period, while glycoproteins gp62, gp48, and gp25 appeared or increased during the chase period. In contrast, the glycoprotein gp53 was a major protein in pulse-labeled cell lysates and remained constant throughout the chase period. In further experiments two stable forms of p80 differing in intramolecular disulphide bonding were observed.  相似文献   

6.
Processing of polypeptides of the mouse mammary tumor virus, a type B retrovirus, was investigated in a transplanted thymic lymphoma cell line of the GR strain (GRSL). This cell line was maintained in vivo in ascites form and in vitro as a suspension culture. GRSL cells produce clusters of intracytoplasmic A particles and are virtually deficient in the production of mature extracellular B-type particles. As control, a mammary tumor cell line of the same mouse strain capable of complete virion synthesis was used. The kinetics of viral polypeptide synthesis were studied by pulse labeling with various isotopes (including (35)S and (32)P), followed by immunoprecipitation of cell lysates with monospecific antisera to the major mouse mammary tumor virus gag and env proteins, p27 and gp52, respectively. Both the primary gag and env precursor polypeptides were synthesized in the GRSL cells, but their conversion into viral proteins was impaired. The major gag precursor, Pr73(gag), was stable over a period of 8 h, and mature viral core polypeptides could not be detected. Also, the highly phosphorylated intermediates in the proteolytic processing of Pr73(gag) in virus-producing cells were absent in GRSL cells. By immunoprecipitation, Pr73(gag) was detected in a GRSL particle fraction with the density of intracytoplasmic A particles. The precursor for envelope proteins, Pr73(env), was turned over without the generation of mature viral envelope components gp52 and gp36. The in vivo-transplanted ascites GRSL cells, however, were shown to express gp52 on the cell surface together with a 73,000-dalton polypeptide, as indicated by cell surface iodination and immunoprecipitation.  相似文献   

7.
Structural proteins of equine infectious anemia virus.   总被引:3,自引:2,他引:1       下载免费PDF全文
Equine infectious anemia virus was found to be comprised of fourteen polypeptides of molecular weight ranging from 10,000 to 79,000. Eighty percent of the virion protein was accounted for by five polypeptides, including two non-glycosylated components (p29 and p13) comprising one-half of the virion protein and three glycoproteins (gp77/79, gp64, and gp40).  相似文献   

8.
Immune precipitation with monospecific antiserum was employed to study the intracellular synthesis of viral glycoproteins gp85 and gp37. Labeled gp85 and gp37 were detected from lysates of cells transformed with Rous sacroma virus, strain B77, after long-term labeling with radioactive glucosamine or phenylalanine. Immune precipitates prepared from lysates of cells pulse-labeled for a short time resulted in a glycoprotein of 92,000 molecular weight (gp92). This precursor was stable in B77-transformed Japanese quail cells for several hours, whereas in chicken cells it could be chased within a few hours into virion glycoproteins gp85 and gp37. Similarly, the precursor for the structural viral proteins, pr76, persisted in quail cells much longer than in chicken cells. During very short pulses or in the presence of a glucosamine block (25 mM glucosamine), the antiserum against the viral envelope glycoproteins detected a precursor of higher electrophoretic mobility of approximately 70,000 molecular weight, "p70." Fucose label entered gp92 and gp85 as well as "p70." Proteolytic treatment of virion-bound gp85 in vitro generated two discrete glycoproteins of 62,000 and 45,000 molecular weight, but did not result in an increase in the amount of gp37.  相似文献   

9.
Effect of trypsin on mouse mammary tumor virus.   总被引:6,自引:5,他引:1       下载免费PDF全文
Undisrupted mouse mammary tumor virus (MuMTV) derived from the milk of of RIII mice has been analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electron microscopy after treatment with insolubilized trypsin. No alterations were found in viral fine structure by either freeze-etch or negative-stain electron microscopy. No alterations were found in the ability of trypsinized virus to compete in a radioimmune assay for viral antigens. Infectivity experiments indicate no significant differences in the ability of treated virus to infect C57Bl mice. However, significant differences were observed in polypeptide composition. The intensely periodic acid-Schiff-positive band, gp140, was shown by galactose oxidase-borotritide labeling to be degraded into a fragment of 125,000 molecular weight. The major glycoprotein, gp55, was split into fragments of 36,000 and 23,000 molecular weight, both of which stained with periodic acid-Schiff stain. Gp68 was removed from the virus. Experiments with purified, iodinated gp55 showed that the trypsin-induced fragments of gp55 were immunologically active. We conclude that: (i) certain glycoproteins at the surface of MuMTV are accessible to an insoluble form of trypsin, (ii) the trypsin causes a nick in the polypeptide chain without affecting the configuration of the molecule; (iii) the nicked molecules remain bound to the virus; and (iv) the presence of these nicked molecules does not interfere with the biological or antigenic expression of virus function.  相似文献   

10.
The polypeptide and glycoprotein compositions of the mouse mammary tumor virus virion from primary monolayer cultures of BALB/cfC3H mouse mammary tumor cells were studied by polyacrylamide gel electrophoresis by using internal and external labeling and Coomassie blue and periodic acid Schiff (PAS) staining. Twelve polypeptides were reproducibly resolved by the combined methods. Five major polypeptides were demonstrable with estimated molecular weights of 52,000, 36,000, 28,000, 14,000, and 10,000. Seven minor polypeptides were also consistently detected and had estimated molecular weights of 70,000, 60,000, 46,000, 38,000, 30,000, 22,000, and 17,000. Carbohydrate was associated with five of these polypeptides as measured by PAS stain or [(3)H] glucosamine labeling, or both. These glycoproteins had estimated molecular weights of 70,000, 60,000, 52,000, 36,000 and 10,000. The majority of the PAS stain and glucosamine was found in the 52,000 and 36,000 dalton peaks.  相似文献   

11.
Mouse mammary tumor virus (MuMTV) was purified from two cell lines (GR and Mm5MT/c1), and the genomic RNA was isolated and translated in vitro in cell-free systems derived from mouse L cells and rabbit reticulocytes. The major translation product in both systems was a protein with the molecular weight 77,000. Several other products were also detected, among them a 110,000-dalton and in minor amounts a 160,000-dalton protein. All three polypeptides were specifically immunoprecipitated by antiserum raised against the major core protein of MuMTV (p27), but they were not precipitated by antiserum against the virion glycoprotein gp52. Analysis of the in vitro products by tryptic peptide mapping established their relationship to the virion non-glycosylated structural proteins. The 77,000-dalton polypeptide was found to be similar, if not identical, to an analogous precursor isolated from MuMTV-producing cells. Peptide mapping of the 110,000-dalton protein shows that it contains all of the methionine-labeled peptides found in the 77,000-dalton protein plus some additional peptides. We conclude that the products synthesized in vitro from the genomic MuMTV RNA are related to the non-glycosylated virion structural proteins. Polyadenylic acid-containing RNA from MuMTV-producing cells also directed the synthesis of the 77,000-dalton polypeptide in the L-cell system. If this RNA preparation was first fractionated by sucrose gradient centrifugation the 77,000-dalton protein appeared to be synthesized from mRNA with a sedimentation coefficient between 25 and 35S.  相似文献   

12.
In pulse-chase experiments, the three major Epstein-Barr virus envelope glycoproteins, gp350/300, gp250/200, and gp85, were shown to be synthesized from separate precursors of 190,000, 160,000, and 83,000 daltons, respectively. These three pulse-labeled species were chased into the mature forms of the glycoproteins between 1 and 3 h after transfer to nonradioactive medium. Digestion of precursor forms with endo-beta-N-acetylglucosaminidase H (endo H) yielded polypeptides of 160,000, 120,000, and 75,000 daltons. Comparison of these results with those from experiments with tunicamycin, which specifically blocks N-linked glycosylation, indicated that some other post-translational modification(s), probably O-linked glycosylation, contributes about 100,000 and 60,000 daltons of apparent molecular mass to gp350/300 and gp250/200, respectively. Experiments with endo H showed that mature gp350/300 and gp250/200 contain complex-type (endo H-resistant) N-linked glycosyl chains, whereas gp85 contains both high-mannose (endo H-sensitive)- and complex-type oligosaccharides. In contrast to the results obtained with the three envelope glycoproteins, no precursor forms of the two unglycosylated protein, p160 (the major Epstein-Barr virus capsid antigen) and p140 (an envelope protein), were detected. The partial proteolytic maps of gp350/300 and gp250/200 were quite similar, suggesting that polypeptide sequence homology could account for at least part of the observed serological cross-reactivity of the two proteins. Taken together, these results demonstrate that the polypeptide portions of gp350/300 and gp250/200 are closely related but not derived from a common precursor. Furthermore, the polypeptide portions comprise half or less of the apparent molecular weight of the mature glycoproteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

13.
Viral protein synthesis in Moloney murine leukemia virus infected high passage mouse embryo cells was studied utilizing monospecific antisera to the viral core protein p30 and envelope protein gp71. Pulse-chase analysis of [35S]methionine-labeled polypeptides in combination with the demonstration of the presence of either gp71 or p30-specific antigenic determinants in them indicated a 84,000-dalton polypeptide as the precursor of viral glycoproteins and four metabolically unstable polypeptides of approximate molecular weights 88,000, 72,000, 62,000, and 39,000 as the precursors of viral core protein, p30. The p30-containing 88,000 and 72,000-dalton polypeptides were distinctly seen in this system under normal growth conditions. Further, the processing of p30 precursors was very rapid and was complete during a 40 min chase while only partial processing of glycoprotein precursor was observed during the same period.  相似文献   

14.
The polypeptide composition of Mason-Pfizer monkey virus was determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Six major polypeptides of molecular weights 68,000, 27,000, 20,000, 14,000, 12,000, and 10,000 were resolved regardless of the cell type (i.e., two human and two rhesus) in which the virus was grown. Protein gp68 (68,000) represented the major virus glycoprotein and protein gp20 (20,000) represented a minor glycoprotein of the virion, again regardless of the cell type of origin of the virus. Protein gp68 appears to be located on the outer surface of the viral envelope, as demonstrated by lactoperoxidase catalyzed iodination of intact virions. Additional glycoproteins were shown to be virion associated; their presence depended, however, on the cell type in which the virus was propagated.  相似文献   

15.
The type-common CP-1 antigen of herpes simplex virus type 1 (HSV-1) is associated in the infected cell with two components, a 52,000-molecular-weight glycoprotein (gp52 or pD) and a 59,000-molecular-weight glycoprotein (gp59 or D). The larger form (D) is also found in the virion envelope. It was postulated that pD is a precursor of D. We found that pD shared methionine and arginine tryptic peptides with D isolated from infected cell extracts. D isolated from infected extracts had the same trypric methionine peptide profile as D isolated from the virion envelope. Thus, processing of pD to D does not involve any major alterations in polypeptide structure. Furthermore, D did not share tryptic methionine peptides with the other major glycoproteins of HSV-1. Using [2-3H]mannose as a specific glycoprotein label, we found that pD, which is a basic protein (isoelectric point = 8.0) contained a 1,800-molecular-weight oligomannosyl core moiety and was processed by further glycosylation and sialyation to a more acidic and heterogeneous molecule D, which as a molecular weight of at least 59,000.  相似文献   

16.
The polypeptide, antigenic, and morphological structure of the mouse mammary tumor virus was studied following protease digestion of intact virions. Intact, untreated virions (rho = 1.17 g/ml) had characteristic envelope spikes, five major polypeptides, and were precipitated by antisera against gp52. Two of the major polypeptides, with molecular weights of 52,000 (gp52) and 36,000 (gp36), had carbohydrate moieties. Protease treatment resulted in spikeless, "bald" particles (rho = 1.14 g/ml), which had altered surface antigenicity and which contained neither gp52 nor gp36. These data indicated that gp52 and gp36 were on the viral envelope. Bald particles retained a 28,000 dalton polypeptide (p28) which was proposed as the major internal polypeptide.  相似文献   

17.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

18.
We have identified and characterized two small virus-specific polypeptides which are produced during infection of cells with Sindbis virus, but which are not incorporated into the mature virion. The larger of these is a glycoprotein with an approximate molecular weight of 9,800 and is found predominantly in the medium of infected cells. Three independent lines of evidence demonstrate conclusively that this 9,800-dalton glycoprotein is produced during the proteolytic conversion of the precursor polypeptide, PE2, to the virion glycoprotein E2. This small glycoprotein is therefore analogous to the virion glycoprotein E3 of the very closely related alphavirus, Semliki Forest virus. The 9,800-dalton glycoprotein of Sindbis virus, unlike the E3 glycoprotein of Semliki Forest virus, is not, however, present in the viral particle. The other virus-specific polypeptide is 4,200 daltons in size, does not appear to be a glycoprotein, and is neither incorporated into the mature virus nor released into the culture medium. The gene for this small polypeptide is present in the viral 26S mRNA (the mRNA which encodes all the viral structural polypeptides) and appears to be located in the portion of the mRNA which encodes the two viral glycoproteins. The possibility that this 4,200-dalton polypeptide functions as a signal peptide during the synthesis of the viral membrane glycoproteins is discussed.  相似文献   

19.
The envelope glycoproteins (designated gp70 and gp45) of the Rauscher strain of murine leukemia virus were solubilized by osmotic shock and freeze-thawing in chaotropic solutions. The viral glycoproteins were then purified by phosphocellulose chromatography and gel permeation chromatography on Bio-Gel A-1.5m. Yields by this procedure were 6.2% for gp70 and 1.3% for gp45 on a protein input basis. The apparent molecular weights were respectively 67 500 and 47 500 with a polypeptide chain molecular weight of approximately 45 000 for both glycoproteins. Amino acid analysis showed a high degree of similarity for both components, with some differences subject to further evaluation. The total carbohydrate content was approximately 32% for gp70 and 6-9% for gp45. In keeping with the amino acid compositional similarity suggesting relationships, alanine was found to ba the amino-terminal amino acid of both glycoproteins, and cross-reactivity was demonstrated by immunologic tests. The data suggest that the chief difference between gp70 and gp45 lies in the carbohydrate content.  相似文献   

20.
Varicella-zoster virus specifies the formation of several glycoproteins, including the preponderant gp98-gp62 glycoprotein complex in the outer membranes of virus-infected cells. These viral glycoproteins are recognized and precipitated by a previously described monoclonal antibody designated monoclone 3B3. When an immunoblot analysis was performed, only gp98 was reactive with monoclone 3B3 antibody; likewise, titration in the presence of increased concentrations of sodium dodecyl sulfate during antigen-antibody incubations caused selective precipitation of gp98 but not gp62. Further structural analyses of gp98 were performed by using the glycosidases endo-beta-N-acetylglucosaminidase H (endoglycosidase H) and neuraminidase and two inhibitors of glycosylation (tunicamycin and monensin). In addition to gp98, antibody 3B3 reacted with several intermediate products, including gp90, gp88, gp81, and a nonglycosylated polypeptide, p73. Since gp98 was completely resistant to digestion with endoglycosidase H, it contained only complex carbohydrate moieties; conversely, gp81 contained mainly high-mannose residues. Polypeptide p73 was immunodetected in the presence of tunicamycin and designated as a nascent recipient of N-linked sugars, whereas gp88 was considered to contain O-linked oligosaccharides because its synthesis was not affected by tunicamycin. The ionophore monensin inhibited production of mature gp98, but other intermediate forms, including gp90, were detected. Since the latter product was similar in molecular weight to the desialated form of gp98, one effect of monensin treatment of varicella-zoster virus-infected cells was to block the addition of N-acetylneuraminic acid. Monensin also blocked insertion of gp98 into the plasma membrane and, as determined by electron microscopy, inhibited envelopment of the nucleocapsid and its transport within the cytoplasm. On the basis of this study, we reached the following conclusions: the primary antibody 3B3-binding epitope is located on gp98, gp98 is a mature product of viral glycoprotein processing, gp98 contains both N-linked and O-linked oligosaccharide side chains, gp90 is the desialated penultimate form of gp98, gp88 is an O-linked intermediate of gp98, gp81 is the high-mannose intermediate of gp98, and p73 is the unglycosylated precursor of gp98.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号